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1 Introduction

The spread of robotization and, more generally, of automation is seen as one of the most chal-

lenging issues for the future of workers and their integration into society and economy of our

communities (e.g., Ford, 2015; West, 2018; Susskind, 2020).

Among the major questions, the risk of disappearing of the middle-class and the increasing

level of between-group inequality, as a result of a more intensive use of new technologies, has

spurred an intense debate. As proof of this, Jaimovich et al. (2020) find that the likelihood

of working in routine occupations between the pre-polarization era and the post-polarization

one decreased roughly by 16%. Further causes of concern are linked to the ongoing COVID-19

pandemic, that might likely amplify this pattern, as argued by Okyere et al. (2020) for the cases

of epidemic interactions, communications and meal delivery in China. Relatedly, Prettner and

Bloom (2020) point out that the “hollowing out” effect of robots and automation is expected to be

reinforced by the COVID-19 pandemic, while Leduc and Liu (2020) discusses how the pandemic-

induced uncertainty about workers productivity may further trigger automation adoption. Muro

et al. (2020) stress how “Robots’ infiltration of the workforce doesn’t occur at a steady, gradual

pace” but is “concentrated especially in bad times such as in the wake of economic shocks, when

humans become relatively expensive as firms’ revenues rapidly decline”. Ultimately, the rising

concerns about the replacement of workers by this new wave of labor-saving technological change

is even leading scholars to support robot taxation (e.g., Costinot and Werning, 2018; Thuemmel,

2018; Guerreiro et al., 2020).1

A growing literature is currently dealing with the effects of robotization (and even more

generally of automation) on various labor market outcomes: unemployment, participation, along

with wage and inequality effects. At the same time, there has been a rising use of skills within

the production process. For instance, the raw percentages of hours worked by skilled labor has

increased by 6% on average across both sectors and countries, while the ones worked by unskilled

labor dropped by 7% in the 1995-2005 period (see Battisti et al., 2021). These two phenomena

are jointly assessed in the race between technology and education, pioneered by Tinbergen (1974)

and further explored by Goldin and Katz (2009), Autor et al. (2020) and many others. By making

use of International Federation of Robotics (2019) data, we document that the share of robotic

capital has dramatically increased from the ’90s till to the end of the following decade of about

40%, reaching percentages of more than 2.5% in some industrial sectors in countries such as

Japan, Germany, Italy and Spain, where a lot of job routines are robotized or automated.

As pointed out by Griliches (1969), the introduction of new technologies in production could

give rise to adjustments in the relative demand for different labor skills which, in turn, are

1On the other hand, it should be acknowledged the positive role potentially and effectively played by
robots during the COVID-19 outbreak, especially in terms of public health and services, addressing
risks of infectious diseases, disinfection, surgical procedures, delivering foods and medication, as argued,
among others, by Yang et al. (2020), Khan et al. (2020) and Tavakoli et al. (2020).
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reflected in their relative wages. We focus on these issues by investigating whether robotic

capital is complementary to some kinds of skills, to which we refer to as robotic capital-skill

complementarity (RCSC) hypothesis. In so doing, we take into account other forms of capital

and a wide array of skill types. Particularly, we build a specific stock of robotic capital and include

it into different types of production functions at the country-sector level, distinguishing between

robotic, ICT capital and the remainder. The robustness of our results are assessed using two

different datasets and analysis frameworks. Our primarily dataset includes 8,217 observations,

matched over 35 countries and 17 sectors (based on WIOD, 2015), while a secondary, and smaller

dataset, includes 2,843 observations, matched over 15 countries and 17 sectors (based on EU

KLEMS, 2009).

To the best of our knowledge, the present study represents the first attempt for investigating

complementarity/substitutability between different kinds of automatized capital and skill types,

from a country-industry perspective. In this respect, the main contributions of the study can be

summarized as follows:

The main contributions of this work can be summarized as follows:

1. The robotic capital-skill complementarity hypothesis is examined using different samples,

frameworks of analysis and methods. Our main outcomes point to an average lower elas-

ticities of substitution (EoS) between robotic capital and skilled labor (i.e. more comple-

mentarity, then between robotic capital and unskilled labor.

2. The use of nonparametric methods allows us to relax functional forms assumptions on the

production functions and to uncover high heterogeneity among time, sectors, countries.

3. In the majority of observations we find a growing spread among EoS patterns starting from

the end of ’90s

4. Finally, the different grouping of medium skill workers seem to give a hint of the more

substitutable role of medium skills as inAcemoglu and Autor (2011).

The rest of the paper is organized as follows. Section 2 presents a survey about the recent the-

oretical and empirical works dealing with automation and robotization issues; Section 3 briefly

illustrates the datasets construction, providing information on the main variables used through-

out the analysis, as well as several insights with respect to the trends of robotization within the

labor market; Section 4 sets up the basic analysis framework and reports the parametric and

nonparametric test results; Section 5 contains concluding remarks.

2 Robotization and labor market related literature

This paper speaks to different strands of literature. First, it is inspired by works on automation

and labor market outcomes, such as productivity, wages and unemployment, whereby efforts
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by researchers have been devoted in both the modelling and testing the impact of automation

technologies, of which robotization represents a subset.

From a theoretical standpoint, the concerns recently posed by analysts and scholars on the

consequences of the rapid outbreak of artificial intelligence, digital technologies and robots on

labor market have prompted many studies on this field.2 With specific reference to the em-

ployment effects, an optimistic view is offered by Nakamura and Zeira (2018), who develop a

task-based model where all labor tasks are automatized if wages are adequately high: nonethe-

less, if the number of new jobs created grow sufficiently fast, the share of jobs mechanized each

period shrinks and unemployment stemming from automation declines and converges to zero

in the long-run. Relatedly, Irmen (Irmen) proposes a model in which a decline in population

growth produces strong incentives for automation and fosters economic growth in the long-run.

On the contrary, studies analyzing the wage and inequality impacts of automation have come to

more worrisome conclusion. For instance, by developing a dynamic general equilibrium model

incorporating investments in both robots and traditional capital, Berg et al. (2018) state that

automation produce two contrasting effects: positive for growth and negative for equality. Analo-

gously, Moll et al. (2019) argue that automation may exacerbate inequality via increasing returns

to wealth, in a theoretical model linking technology to personal income and wealth distributions.

On the same line, the growth model of directed technical change3 proposed by Hemous and Olsen

(2014), with machines complementing (replacing) high-skilled (low-skilled) labor and horizontal

innovations (namely, the introduction of new products, which raises the demand for both skill

types), leads to stagnating wages for low-skilled workers and intensification of wage disparities.

Meanwhile, although the growing empirical literature is attempting to address the many con-

cerns regarding the impact of robotization on labor market outcomes, the evidence is far from

clear-cut. For instance, pioneering works by Acemoglu and Restrepo (2020) and Graetz and

Michaels (2018), employing new data from the International Federation of Robotics (IFR) on

operational industrial robots, point to, respectively, a harmful effect of robotics on wages and

employment in the US labor market from 1990 to 2007 and a favorable influence on produc-

tivity growth in 17 economies spanning the period 1993-2007.4 Contrary to the non-significant

association between robotization and total employment in Graetz and Michaels (2018), de Vries

et al. (2020) provide evidence of a strong decline in the employment share of routine manual

task-intensive jobs in a panel of 37 countries and 19 sectors over the years 2005-2015. On the

same line, Chiacchio et al. (2018) report that the adverse impact of robot adoption comes at

the expense of middle-educated workers. Similarly, by introducing an indicator for the ability

of robots to execute different tasks, Carbonero et al. (2020) observe a strong, negative effect on

2Such concerns have been summarized in the expression “Is this time different?” by several contribu-
tions, such as Mokyr et al. (2015), Furman (2016) and Balsmeier and Woerter (2019), among others.

3On this point see, inter alia, Acemoglu (1998, 2002).
4By contrast, an ephemeral effect of robots on productivity has been recently documented by Cette et al.
(2021).
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worldwide employment, especially in emerging economies.5 Positive impacts of robotization on

employment are instead found by Klenert et al. (2020) and De Backer et al. (2018) in Europe

and within MNEs, respectively. Opposite findings are highlighted by Compagnucci et al. (2019)

in a panel of manufacturing industries of 16 OECD countries, with robots positively (negatively)

correlated with the growth of hourly wages (hours worked). Likewise, Blanas et al. (2020) show

that robots are associated with a decreasing (increasing) demand for the young, women, low-

and medium-skilled workers (men, older and high-skilled workers).

Overall, it can be noticed that the empirical literature on this field usually produces mixed

results, with evidences of drops in employment and participation, that may be temporary or

focused in some sectors or for specific skills.

The second line of research examines the issues of inequality, whose contributions starting

from Katz and Murphy (1992) and the literature on skill-biased technical change point to different

substitutability degrees for skilled and unskilled workers, as in the recent work of Caselli (2016).

Alongside these themes, this paper is related (to a limited extent) to the polarization of the labor

force framework, namely the documented process, starting from the 1980s, for which employment

has gradually becoming clustered at the tails of the occupational skill distribution (see, for

instance, Acemoglu and Autor, 2011). Such a framework is based upon the so-called routine-

biased technical change hypothesis (Autor et al., 2003), whereby the “hollowing out” effect of

automation leads to the disappearance of jobs requiring a well-defined set of repetitive tasks,

typically assigned to middle-skilled workers.6

Furthermore, a relevant number of studies deals with problems of capital-skill complemen-

tarity at a general level of capital, such as Griliches (1969), Fallon and Layard (1975), Duffy

et al. (2004) and Henderson (2009), whereas Krusell et al. (2000), Raveh and Reshef (2016),

Eden and Gaggl (2018), Taniguchi and Yamada (2019) and Ohanian et al. (2021) investigate the

effects of specific, non-neutral kinds of capital equipment. The complementarity/substitutability

argument is important in the reversal discussion of technology adoption pioneered by Krugman

(1979), because if a productive factor, such as unskilled labor, becomes less complementary to

capital and the latter is increasingly more relevant in the production process, then this is equiv-

alent to a higher opportunity cost for such factor, implying greater demand for unskilled labor

saving technology, as in Koeniger and Leonardi (2007) or Alesina et al. (2018). The evidence

5As further evidence from a single country perspective, Faber (2020) observes a robust negative influence
of robotization on employment within the Mexican labor market, in particular for men and low-skilled
workers. Relatedly, Lankisch et al. (2019) and Dixon and Lim (2020) argue that automation can be
considered as a crucial factor in explaining, respectively, the rising inequality and the decline of the
US labor share. With specific reference to Portugal, Fonseca et al. (2018) point out job polarization
as a result of rising automation and computerization. Conversely, Dauth et al. (2018) show sectoral
adjustments in the composition of total employment in German labor markets over the years 2004-2014,
with the creation of additional service sector jobs offsetting the losses in manufacturing industry.

6Additional empirical evidence in this direction is provided, among others, by David and Dorn (2013),
Michaels et al. (2014), Jaimovich and Siu (2020) and vom Lehn (2020).
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from this literature literature typically validates the hypothesis of more complementarity be-

tween capital and skilled workers. In particular, Krusell et al. (2000) analyze the phenomenon

under investigation in the direction of this paper, by disaggregating capital in structures and

equipment, finding the latter as less substitutable with skilled workers. On the same line, by

paying attention to developing economies, Raveh and Reshef (2016) find that only R&D capital

is complementary to skilled labor, while less innovative capital is complementary to unskilled.

Analogously, Taniguchi and Yamada (2019) and Eden and Gaggl (2018) observe similar results

for ICT capital in a panel of OECD countries and US, respectively. Lastly, Dao et al. (2020)

argue that the downward trend of the labor share of income can substantially be explained by

the high substitutability between routinized jobs and computer capital. This could be even more

severe with robotic capital, insofar as the embodied content of technical progress may be higher,

for instance, than ICT or other capital equipment. Moreover, Caselli and Manning (2019) show

how under the assumption of a reduction of the relative price of investment goods driven by the

new technology, the existing capital return will drop, implying a higher return for labor. The

crucial empirical question, in such context, is whether and what workers benefit from this new

wave of technological advances.

3 Data

In this section, we provide a brief overview of the relevant data used to carry out the present

study (3.1), as well as a set of descriptive findings surrounding the relationship between the rise

of automated capital and workers’ replaceability (3.2).

3.1 The datasets

The empirical analysis builds upon the integration of data from different sources. In particu-

lar, we exploit information on robots from the Industrial Federation of Robotics (IFR, 2019),

and merge these data with both WIOD (2015) and EU KLEMS (2009) releases, encompassing

information on worker types, capital assets and value added, among others.7 In so doing, we de-

rive two distinct datasets on which the robotic capital-skill complementarity (RCSC) hypothesis

can be tested. The WIOD dataset contains 8,217 observations, matched over 35 countries and

17 industries spanning the period 1995-2009, whereas the EU KLEMS dataset includes 2,843

observations, matched over 15 countries and 17 industries for the years 1994-2005.8

7Data on operational stock and deliveries of robots are provided by IFR (2019) according to ISIC Rev. 4
industry classification, contrary to ISIC Rev. 3.1 characterizing both the WIOD (2015) and EU KLEMS
(2009) datasets. In order to merge the different coded sources, we make use of a correspondence table
to convert IFR data from ISIC Rev. 4 to ISIC Rev. 3.1 industry classification.

8The set of countries, industries and time periods, driving the construction of the two datasets, are
dictated by data availability. The list of countries and industries, as a result of the matching process,
is reported in Section B of the Appendix.
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The main variables employed throughout the empirical analysis are:

� Robotic capital stock, KR. Data on stock, deliveries and average unit price of operational

industrial robots are retrieved from the World Robotics: Industrial Robots and Service

Robots (IFR, 2019). Following Graetz and Michaels (2018), we compute the robot stock

(i.e., quantities) for each country-sector pairs using the perpetual inventory method based

on robot deliveries (i.e., investments) and assuming a depreciation rate of 10 percent.9

Specifically, we calculate RS,cit = RD,cit + (1 − δ)RS,cit−1, where c, i and t represent

country, industry and time, respectively; RS and RD denote, respectively, the stock and

deliveries of robots, whereas δ is the depreciation rate. Consequently, KR, is obtained by

KR,cit =
RS,cit ∗RP,ct

Dcit

where RP represents the average unit price of industrial robots and D is the capital defla-

tor;10

� Total capital stock, K, and value added, Y , from WIOD (2015) or EU KLEMS (2009);

� Non-robotic capital, KNR, from WIOD (2015) or EU KLEMS (2009), computed as the

difference between total (K) and robotic capital stock (KR);

� ICT and other capital stock, KI and KO, respectively, from EU KLEMS (2009), as addi-

tional, disaggregated measures of capital;

� High-, medium- and low-skilled workers, from WIOD (2015) or EU KLEMS (2009), ex-

pressed in terms of hours worked, hourly wages, hours and income shares, depending on

the specific estimated models.

All variables are expressed in real prices and PPP adjusted 2005 international dollars, using the

PPP conversion factor from Inklaar and Timmer (2014). Descriptive statistics, based on both

the WIOD (2015) and EU KLEMS (2009) datasets, are reported in section C of the Appendix.

3.2 Robotic capital penetration in advanced economies

The stock of robotic capital has risen substantially in advanced economies over the past decades.

To have an apples-to-apples comparison, the total real capital evolution in the period 1995-2009

from Penn World Table 10 (Feenstra et al., 2015) shows an increase on the order of 40% in Spain,

9As in Graetz and Michaels (2018), to check the robustness of our findings, the robotic capital variable
is also constructed using depreciation rates of 5 and 15 percent.

10The complete strategy used to measure robotic capital stock is detailed in section A of the Appendix.
As a robustness check, in the case of the EU KLEMS sample, the robotic capital stock has also been
computed using non-ICT and other machinery and equipment capital deflators, without affecting the
core outcomes of the analysis.
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20% for countries as Italy, Japan and Germany. The same economies on average doubled the

robotic capital (in the case of Spain, it increased more than three times). Additionally, United

States witnessed a more substantial growth around 230%. Such an expansion was driven, in

particular, by strong robotic investments in the rubber and plastic, wood products, electronics

and transport equipment industrial sectors.11

1
2

3
4

1995 2000 2005
year

Robotic Capital ICT Capital
Other Capital Total Capital

a) EU Growth Rate Capital Variables (1994 =1)

1
2

3
4

1995 2000 2005
year

Robotic Capital ICT Capital
Other Capital Total Capital

a) US Growth Rate Capital Variables (1994 =1)

Figure 1: Capital stock evolution, 1994-2005

Figure 1 indicates that the evolution of automated capital equipment has been much pro-

nounced than the rest either in USA or EU, thus providing a clear picture about the strong

penetration of automation and digital technologies within the productive processes.12

On this point, as shown in panel a) of Figure 2 below, in the period under investigation the

share of robotic capital has touched peaks of about 2.5%-3% in Japan, Spain, Italy and Germany,

particularly in wood products, electronics and transport equipment industries (ISIC Rev. 3.1

codes 20, 30t33 and 34t35, respectively), in panel b) of Figure 2.13

11The robotic capital evolution for a subset of countries and industries is provided in section C of the
Appendix.

12A similar trend is highlighted by Schivardi and Schmitz (2018) for ICT capital in a sample of OECD
economies. In our EU KLEMS sample, the share of ICT capital in total capital recorded an average of
about 8.2%, with maxima exceeding 25% in industries of Austria, Australia, Denmark, Finland, United
Kingdom, Slovenia and United States.

13Code descriptions of the ISIC Rev. 3.1 industries are reported in Table B2 of the Appendix.
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Figure 2: Share of robotic capital
in EU KLEMS countries and industries, 1994-2005

What this tells us is that the capital composition of production factors shifted toward a more

intensive use of robots, as further highlighted in Figure 3 below. Looking to the stock of robots

over workers deepening - the so-called robot density, as in Graetz and Michaels (2018) - in the

period 1995-2017 the growth continues steadily the tendency, either looking to hours worked, or

to number of employees.14 Such descriptive evidence suggests that the share of robotic capital,

as pointed out in Figure 1, may have grown up following a similar trend.

The increased robotization of the production process raises the question about relative prices

and directed technical change. Figure 4 shows that the relative current price ratio of robots

versus workers strongly and steadily decreased in two countries for which we have original price

data. The difference is interesting because while in Germany the decrease continued after 2005,

in the USA the series became rather flat. One possible interpretation is that in a country with

more flexible wages, the usually rigid nominal floor is less binding than in another with more

stringent labor market institutions.

To sum up, we see how: i) robotic capital grew more than the rest of capital (almost in line

14Being not constrained by robot prices data, the robot density variables are computed using the EU
KLEMS (2019) release (Adarov et al., 2019; Stehrer et al., 2019) to exploit the full length of the IFR
series on stock of industrial robots.
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Figure 3: Robot density, 1995-2017

with ICT), ii) the robotic capital deepening was strong, iii) the relative prices of robots went

down. These descriptive findings suggest a strong pressure on workers that in some countries

may be satisfied through price reduction (typically in real terms) and in other through quantity

reduction, which happens to be the usual outcome analyzed in the extant literature.

This way we wonder which kind of workers may be more substitutable by robots, with respect

their marginal products (proxied by wages) and their complementarity with respect to robots.

The latter issue follows, for example, the intuition of Acemoglu and Autor (2011) about the

mechanized and/or routinized tasks that may be replaceable by machines. If medium-skilled

workers were, for instance, more replaceable by robotic capital, this process should drive towards

wage polarization and increasing inequality, as pointed out in France by Davis et al. (2020).

4 Estimation strategy and benchmark results

In the light of what has emerged in the descriptive evidence, this section deals with the em-

pirical assessment of the RCSC hypothesis. Specifically, subsection 4.1 provides a parametric

framework aimed at estimating the EoS between different robotic capital stock and skill groups.

Subsequently, in the subsection 4.2, by employing non-parametric techniques, we will inquire

into the potential heterogeneity of the EoS across (groups of) countries, industries and time.
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Figure 4: Relative cost of robots, 1998-2008

4.1 Parametrics

By borrowing from the contributions of Krusell et al. (2000) and Eden and Gaggl (2018), a

standard formulation which enables incorporating distinct kinds of capital and derive different

substitutability degrees among factor inputs is offered by Cobb-Douglas production function

(removing subscripts for countries, industry and time to ease notation) over non-robotic capital,

KNR, assumed as neutral with respect to skill types, and a constant elasticity of substitution

(CES) over non-neutral robotic capital equipment15, KR, skilled and unskilled labor, S and U ,

respectively:

Y = Kα
NR

[
β[γ(KR)ρ + (1− γ)(S)ρ]

σ
ρ + (1− β)(U)σ

] 1−α
σ

(1)

where Y represents aggregate output; β and γ are distribution parameters; ρ and σ govern

the elasticity of substitution between KR and S, and between the KR-S composite and U ,

15In accordance with the International Standard Industrial Classification of all Economic Activities (ISIC
Rev. 4), robots are group under ‘general-purpose machinery’, specifically under ‘lifting and handling
equipment’ and ‘other special-purpose machinery’. As these are reported within the broader heading
of machinery (i.e., non-ICT capital), robots are not part of ICT capital, which covers computers and
telecommunication equipment. We are grateful to Robert Inklaar for his comment on this point.
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respectively.16

By assuming that the markets for inputs are competitive, the first-order conditions of profit-

maximizing behavior and price-taking firms imply (simultaneously) estimating the following sys-

tem of two equations:

ln

(
KS
R,cit

SScit

)
= ln

(
γ

1− γ

)
+ ρ ln

(
KR,cit

Scit

)
+ ε1,cit (2)

ln

(
UScit
QS

)
= ln

(
β

1− β

)
+ σ ln

(
Ucit
Q

)
+ ε2,cit (3)

where c, i and t represent country, industry and time, respectively; Q =
{
γKρ

R,cit + [1− γ] (Scit)
ρ)
} 1

ρ

is the composite term comprising robotic capital and skilled labor; KS
R, SS , US , QS denote the

income shares of KR, S, U and Q, respectively, while ε1 and ε2 are the error terms, allowed to

be correlated across equations. The EoS between robotic capital and skilled labor, 1/ (1− ρ), is

derived by equation (2), while the EoS between the KR-S composite (i.e., Q) and U , 1/ (1− σ),

is identified from equation (3).

The RCSC hypothesis for the specifications in (2)-(3) is verified if:

1/ (1− ρ) < 1/ (1− σ) =⇒ σ > ρ

Estimates are carried out using the generalized method of moments (GMM) technique, treat-

ing all the input factors as endogenous and exploiting their lagged values as instruments. Table

1 reports the results of our benchmark estimates.17 In this respect, our findings provide a broad

confirmation of the RCSC assumption. Specifically, the EG procedure points to this direction

when applied to both the WIOD and EU KLEMS samples, where the EoS between the robotic-

capital and skilled labor, 1/ (1− ρ), is lower than between the KR-S composite and unskilled

labor, 1/ (1− σ), which implies σ > ρ.

The robustness of results presented in Table 1 are assessed in several ways. Firstly, in line with

suggestions by Graetz and Michaels (2018), we check whether the RCSC hypothesis is sensitive to

16 The specification in (1) implies the crucial assumption of treating KNR as completely neutral with
respect to different skill groups. Nonetheless, due to data availability - especially from a macro per-
spective - and constraints imposed by the functional forms, there are not many ways to overcome this
issue, and such a formulation turns out to be suitable in our case to test our RCSC hypothesis.

17As an extended analysis, we also test the total capital-skill complementarity hypothesis, from a country-
industry perspective, in the spirit of Duffy et al. (2004). Estimations performed on both the WIOD
and EU KLEMS samples generally confirm the hypothesis of a lower EoS between capital stock and
skilled labor. Additionaly, we also find evidence of the robotic (and ICT) capital-skill complementar-
ity hypothesis according to the four- and six-factor production functions proposed by Taniguchi and
Yamada (2019). Results of these specifications are not presented here for reasons of space, but are
available upon request.
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Table 1: Estimated elasticities of substitution

Production functions 1/ (1− ρ) 1/ (1− σ) Obs.

KR & S {KR, S} & U
Eqs. (2)-(3) 2.711 3.464 4501

WIOD (1995-2009)
Eqs. (2)-(3) 9.943 30.657 1449

EU KLEMS (1994-2005)

Notes: The estimated coefficients and standard errors are reported in
Table D1 of the Appendix.

a different computation of the robotic capital stock, using a 5 and 15 percent depreciation rate.18

In both cases, our main findings turn out to be unchanged, thus providing broad confirmation

of the robotic capital-skill complementarity hypothesis.

4.2 Nonparametrics

In order to relax the assumption of CES functional forms and of homogeneity parameters among

observations we employ in this section kernel density estimations in the spirit of Henderson

(2009).

Specifically, consider a general nonparametric function as mc,i,t(·) (see, for instance, Battisti

et al., 2021, for a production function based application):

Ycit = m(KNR,cit,KR,cit,Scit,Ucit,dct,dt) (4)

where, discrete variables: dc,t, dt represent respectively a country-sector effect and a time

effect. While the latter is ordered by nature, the former has no natural ordering. In a parametric

setting this would quickly eliminate degrees of freedom, while in a nonparametric setting we may

smooth across both time and sector in order to leverage neighbors cells for local information (see

Li and Racine, 2007).

Then we took the gradients of derivates, as in Henderson (2009), to extract the Morishima

individual pairwise elasticities (with H representing the Hessian matrix), σ, between inputs q

and l for the multiple-input production technology y = m(x1, x2, . . . , xp):

σql =
ml

xq

Hql

|H|
− ml

xl

Hql

|H|
=

mlxl
mqxq

(
σAql − σAll

)
(5)

where σA denote the Allen-Uzawa EoS.

Table 2 below reports the median results of EoS among robotic capital and skilled/unskilled

18To save space, the outcomes of these alternative estimated models are relegated in Section D of the
Appendix.
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workers for groups of countries/sectors.

Table 2: Estimated median Morishima elasticities of substitution

Benchmark RK δ = 5% RK δ = 15%

EoS KR-S EoS KR-U EoS KR-S EoS KR-U EoS KR-S EoS KR-U
Quartile values

1st quartile -4.297 -1.231 -4.089 -1.324 -4.193 -1.327
(0.318) (0.367) (0.340) (0.383) (0.339) (0.420)

2nd quartile 0.000 0.104 0.000 0.097 -0.002 0.128
(2.447) (2.794) (2.586) (2.821) (2.381) (3.050)

3rd quartile 0.633 5.311 0.737 5.131 0.604 6.135
(26.432) (29.950) (26.520) (29.592) (24.848) (32.036)

Groups of Countries
Europe 0.006 0.146 0.009 0.146 0.002 0.205

(2.347) (2.692) (2.411) (2.678) (2.318) (3.058)
Non-Europe -0.031 0.003 -0.037 0.001 -0.025 0.000

(3.030) (3.485) (3.069) (3.579) (2.768) (2.957)
Major Countries

DEU 0.008 0.007 0.004 -0.001 0.003 0.000
(0.067) (0.093) (0.077) (0.086) (0.049) (0.063)

ESP 0.029 0.138 0.028 0.208 0.058 0.116
(0.305) (0.306) (0.208) (0.363) (0.289) (0.324)

FRA 0.052 0.038 0.060 0.044 0.065 0.033
(0.115) (0.207) (0.115) (0.192) (0.127) (0.229)

GBR 0.026 0.084 0.030 0.113 0.036 0.091
(0.424) (0.355) (0.421) (0.382) 0.415 (0.433)

ITA 0.010 0.001 -0.014 0.004 0.005 0.002
(0.204) (0.072) (0.211) (0.083) (0.254) (0.092)

JPN -0.013 0.000 -0.014 -0.003 -0.011 0.001
(0.089) (0.055) (0.049) (0.036) (0.081) (0.035)

KOR -0.452 -0.001 -0.321 0.001 -0.081 -0.012
(7.536) (6.999) (5.686) (6.443) (7.020) (7.539)

USA -0.001 0.002 -0.004 0.008 -0.001 -0.002
(0.155) (0.077) (0.179) (0.141) (0.110) (0.081)

Major Industries
20 0.030 0.417 0.059 0.460 0.001 0.617

(2.185) (3.836) (2.341) (4.090) (2.164) (4.670)
25 0.172 -0.025 0.174 -0.023 0.247 -0.022

(0.684) (0.997) (0.900) (1.183) (0.858) (1.339)
27t28 0.069 0.079 0.064 0.057 0.043 0.085

(0.246) (0.312) (0.288) (0.349) (0.308) (0.376)
30t33 0.109 0.246 0.130 0.221 0.102 0.258

(1.028) (1.267) (0.955) (1.356) (1.069) (1.418)
34t35 0.039 -0.019 0.045 -0.059 0.052 -0.019

(0.653) (0.575) (0.788) (0.684) (0.689) (0.659)
Other groupings

Share of RK ≤ median -22.453 12.508 -16.162 10.139 -21.541 11.009
(129.128) (151.097) (131.585) (144.813) (133.228) (154.724)

Share of RK ≥ median 0.026 0.063 0.029 0.059 0.020 0.083
(1.093) (1.280) (1.118) (1.316) (1.145) (1.446)

Notes: Time and country-by-sector fixed effects included. Standard errors in parentheses beneath each coefficient.
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Some general results we may draw are: i) an overall evidence of RCSC, ii) this effect is stronger

for European and countries with higher endowment of automation, iii) these findings are robust to

different capital stock computations (according changing shares for perpetual inventory method).

Then, given the nature of nonparametric estimation we may look for the dynamics of this

EoS patterns, as in Figures 5 and 6. Quite interestingly a large common trend shows a cross

patterns of EoS, with a reverse around end of ’90s - early ’00s and a growing spread over time.

This may be interpreted as a hint of higher and higher relative complementarity of the high

skilled workers during the pattern of development (and of robotization).

1995 2000 2005 2010
Year

EoS KR-S EOS KR-U

EU

1995 2000 2005 2010
Year

EoS KR-S EOS KR-U

Non-EU

1995 2000 2005 2010
Year

EoS KR-S EOS KR-U

USA

2002 2004 2006 2008
Year

EoS KR-S EOS KR-U

JPN

Figure 5: Median Morishima EoS evolution in selected (groups of) countries, 1995-2008
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1995 2000 2005 2010
Year

EoS KR-S EOS KR-U

20

1995 2000 2005 2010
Year

EoS KR-S EOS KR-U

27t28

1995 2000 2005 2010
Year

EoS KR-S EOS KR-U

30t33

1995 2000 2005 2010
Year

EoS KR-S EoS KR-U

All

Figure 6: Median Morishima EoS evolution in selected industries and overall, 1995-2008
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5 Concluding remarks

The rising concerns stemming from the intensive use of automation in production are driving

many scholars towards a better understanding of its labor market implications. Furthermore,

the pressure exerted by the COVID-19 pandemic for a complete rethinking of the productive

process is fueling a heated debate on whether robots, computerization and digital technologies

will lead either to a job destruction or creation.

In this paper, we participate to the current discussion by investigating the extent of com-

plementarity between robotic capital and different skill types. Specifically, relying upon a con-

structed measure of robotic capital stock , we study whether robotic capital is complementary

to skilled workers and substitute to unskilled labor - as envisaged by Tinbergen (1974) in the so-

called “race between technology and education”. The empirical analysis is carried out using two

distinct samples of countries and industries, mainly based upon the IFR, WIOD and EU KLEMS

datasets, over the years 1994-2009 and 1994-2005, respectively. Our main findings consistently

point to a lower elasticity of substitution between robotic capital and skilled labor, compared to

unskilled employees.

This looks quite robust across countries and sectors, over time, but with a high degree of

heterogeneity. A common turning point in the relationship among skills and robots seem to lie

in the end of ’90s when a growing automation is coupling with a bigger relative demand for high-

skilled workers, when the robots will become increasingly important in the production process

and able to reproduce even more complex tasks.

By and large, policymakers face numerous challenges. In the short run, the focus should

be placed in new organizational needs of production, exceedingly influenced by the ongoing

COVID-19 pandemic. Moreover, the advent of improved robots as well as new technological

developments, typically incorporated in intangible assets, such as those related to the artificial

intelligence, may dramatically impact workers in the medium- and long-run. Thus, in terms

of policy implications, the robotic (plus ICT) capital-skill complementarity suggests measures

aimed at improving productivity, wage and education differentials for lower-skilled labor.

Overall, our study casts additional light on understanding the mechanisms underlying the

current forces operating in the labor markets, especially in manufacturing industries of advanced

and transition economies. If on the one hand industrial robots, as a subset of the broader category

of automation technologies, turn out to be a powerful engine of economic growth, on the other

hand they appear to be associated with intensifying inequalities.
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Appendix

A The measurement of the robotic capital stock

The robotic capital measure employed throughout the analysis is built upon two variables: the

stock of industrial robots and their price.

As for the robot stock variable construction, the procedure largely follows that proposed by

Graetz and Michaels (2018), which we refer to for more detailed information.

Data on average unit price of robots are retrieved from the IFR reports. This is computed

as the ratio of the turnover of total robot systems to the number of robots delivered in a specific

country. The IFR provides a series of average unit price of robots (in current, thousand dollars)

for a small group of countries.19 Specifically, robot prices are available for Japan, United States,

Germany, Rep. of Korea, United Kingdom and France, from 1995 to 2008; whereas, for Italy,

robot prices are available from 1995 to 2006. Therefore, the 2007 and 2008 Italy’s robot price

observations are computed using the average robot price growth rate for countries for which we

have original prices data.

At this point, the main necessary assumption we need to impute the average unit price of

robots for the remaining countries (in both the WIOD and EU KLEMS samples) relies upon the

geographical, economic proximity. In particular:

� European countries take on average robot prices of Germany, United Kingdom, France and

Italy;

� American countries take on robot prices for the United States;

� Asian countries (plus Australia) take on average prices of Japan and Rep. of Korea.

In order to obtain robot prices data for the years 1994 and 2009, the series are smoothed

by employing uniformly weighted moving averages, with 1 lagged term, 1 forward term and the

current observation in the filter.20

The robotic capital stock, KR, is calculated by multiplying the number of industrial robots,

RS , by their price, RP , and converted in real terms applying the country-sector specific capital

deflator, D:

KR,cit =
RScit ∗RPct
Dcit

(A1)

Finally, the constructed robotic capital measure in (A1) is expressed in real PPP 2005 adjusted

international dollars using the PPP conversion factor from Inklaar and Timmer (2014).

19See, for instance, IFR (2005).
20The specified procedure is only applied to the WIOD sample. As for the EU KLEMS sample, whose
series ends in 2005, only the observation referring to 1994 is computed.
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B Countries and industries

Table B1: List of WIOD and EU KLEMS countries

Code Country WIOD EU KLEMS
AUS Australia

√ √

AUT Austria
√ √

BEL Belgium
√

BGR Bulgaria
√

BRA Brazil
√

CHN China
√

CZE Czech Republic
√ √

DEU Germany
√ √

DNK Denmark
√ √

ESP Spain
√ √

EST Estonia
√

FIN Finland
√ √

FRA France
√

GBR United Kingdom
√ √

GRC Greece
√

HUN Hungary
√

IDN Indonesia
√

IND India
√

IRL Ireland
√

ITA Italy
√ √

JPN Japan
√ √

KOR Korea, Republic of
√ √

LTU Lithuania
√

LVA Latvia
√

MLT Malta
√

NLD Nederlands
√ √

POL Poland
√

PRT Portugal
√

ROU Romania
√

RUS Russian Federation
√

SVK Slovakia
√

SVN Slovenia
√ √

SWE Sweden
√ √

TUR Turkey
√

USA United States
√ √
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Table B2: List of WIOD and EU KLEMS industries

Code Label Description

AtB Agriculture Agriculture, hunting, forestry, and fishing

C Mining Mining and quarrying

15t16 Food products Food, beverages and tobacco

17t19 Textiles Textiles, textile products, leather and footwear

20 Wood products Wood and products of wood and cork

21t22 Paper Pulp, paper, paper products, printing and publishing

23 Fuel Coke, refined petroleum and nuclear fuel

24 Chemical Chemicals and chemical products

25 Rubber and plastics Rubber and plastics

26 Other Mineral Other non-metallic mineral

27t28 Metal Basic metals and fabricated metal

29 Machinery Machinery, nec

30t33 Electronics Electrical and optical equipment

34t35 Transport equipment Transport equipment

E Utilities Electricity, gas and water supply

F Construction Construction

M Education, R&D Education

Notes: Industries codes are ISIC Rev. 3.1.
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C Descriptive statistics and figures

Table C1a: Main variables’ average by Country

Country Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

AUS 46.293 .03 302.022 1.491 10509.93 255

AUT 130.188 .206 225.864 .975 4987.27 221

BEL 211.233 .268 284.293 1.243 5785.329 255

BGR .652 0 2.472 9.646 100.169 255

BRA 70.557 .009 79.819 5.593 16133.6 255

CHN 413.073 .003 32.716 2.154 202000 176

CZE 49.487 .04 83.914 1.084 2269.901 221

DEU 3588.96 .349 159.498 1.086 48120.88 221

DNK 67.447 .238 508.95 .91 2956.056 221

ESP 595.599 .148 196.129 3.142 16602.87 221

EST .061 .001 42.473 .901 181.45 255

FIN 92.983 .159 206.993 1.01 3847.649 221

FRA 866.935 .187 186.31 1.359 28331.04 221

GBR 474.093 .112 258.041 1.352 27731.79 221

GRC 2.538 .006 131.87 2.11 2927.796 255

HUN 13.179 .016 56.833 1.562 1397.541 221

IDN 4.567 0 23.395 155.909 9550.066 253

IND 25.997 .002 46.724 2.504 47121.29 255

IRL 1.759 .008 166.377 1.127 2814.42 208

ITA 1364.387 .363 220.465 2.442 25709.43 221

JPN 15316.05 .757 614.343 .85 113000 136

KOR 1603.355 .111 228.519 .925 22805.63 255

LTU .076 .001 187.915 .951 1868.649 255

LVA .05 0 26.134 1.08 184.874 251

MLT .065 .003 98.179 9.725 117.693 240

NLD 83.204 .112 358.798 1.305 7809.654 221

POL 32.308 .011 46.532 1.114 5621.846 221

PRT 45.144 .095 151.37 9.917 2960.333 238

ROU 1.737 0 4.364 9.646 431.732 255

RUS 502.529 .027 13.309 1.228 7647.916 255

SVK 27.51 .053 89.841 .98 1136.932 255

SVN 18.35 .074 99.434 1.396 557.447 255

SWE 256.437 .224 234.57 1.035 7393.451 221

TUR 16.337 0 17.82 5.408 1812.973 255

USA 3599.99 .22 459.937 1.044 173000 255

Source: Authors’ calculations based on IFR (2019) and WIOD (2015).
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Table C1b: Main variables’ average by Industry

Industry Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

15t16 310.424 .053 85.367 2.571 20659.5 485

17t19 28.779 .032 77.63 2.572 10048.35 474

20 167.245 .096 59.604 2.523 4150.209 485

21t22 39.865 .007 75.895 2.427 12819.83 485

23 1.505 .006 501.609 2.272 8336.451 453

24 65.474 .013 151.32 2.478 19740.53 485

25 479.463 .187 71.364 2.426 7804.844 485

26 104.729 .052 123.465 2.582 9660.287 485

27t28 963.747 .141 75.124 2.442 24972.12 485

29 393.695 .065 60.914 2.421 18970.35 485

30t33 2773.199 .205 86.08 2.403 47502.88 485

34t35 5733.377 .79 80.099 2.4 19849.87 485

AtB 8.719 .002 107.896 7.994 45295.3 485

C 2.515 .02 455.86 2.774 13749.1 485

E 3.757 .001 664.415 1.492 20505.67 485

F 16.889 .001 22.798 3.748 43029.93 485

M 69.259 .003 36.228 80.151 23083.03 483

Source: Authors’ calculations based on IFR (2019) and WIOD (2015).
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Table C2a: Main variables’ average by Country

Country Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

AUS 33.525 .019 260.077 1.501 9456.825 192

AUT 75.392 .115 210.899 1.207 4929.727 192

CZE 14.65 .015 75.474 1.238 1998.928 176

DEU 3258.643 .31 150.146 1.294 45400.91 204

DNK 66.922 .209 435.599 1.158 3242.643 156

ESP 501.656 .13 184.237 2.789 15767.8 204

FIN 80.883 .137 190.975 1.171 3359.581 204

GBR 453.913 .104 267.929 1.067 25726.79 204

ITA 1258.485 .316 206.255 .563 24663.34 204

JPN 14931.87 .788 435.317 .909 102000 187

KOR 778.618 .05 219.753 .963 19126.85 192

NLD 62.753 .076 346.264 .998 7605.651 192

SWE 290.93 .24 215.718 1.125 6730.833 168

USA 1391.272 .082 430.585 1.039 175000 192

Source: Authors’ calculations based on IFR (2019) and EU KLEMS (2009).

Table C2b: Main variables’ average by Industry

Industry Stock of Robots
Robotic capital Non-Robotic capital

Relative wages Value added
No. of

on Employment on Employment Observations

15t16 643.016 .08 103.547 1.403 29174.68 166

17t19 80.12 .067 103.166 1.519 17470.11 166

20 750.922 .294 80.596 1.219 6312.17 166

21t22 114.551 .014 90.668 1.105 25216.76 166

23 2.569 .006 605.189 1.144 9461.048 142

24 124.42 .015 218.475 1.146 31984.63 142

25 500.475 .217 90.864 1.173 13027.24 142

26 303.234 .096 148.213 1.209 14964.87 166

27t28 2429.709 .298 108.637 1.176 40231.81 166

29 1539.644 .159 87.917 1.079 35004.82 166

30t33 9556.847 .541 113.203 1.071 90054.86 166

34t35 21106.19 2.313 154.337 1.073 38009.5 83

AtB 18.332 .003 182.642 1.926 38032.15 166

C 5.155 .044 916.473 1.252 15236.69 166

E 10.398 .002 1245.522 .961 32416.68 166

F 27.586 .001 24.575 1.247 66625.78 166

M 157.536 .006 59.239 .959 41514.68 166

Source: Authors’ calculations based on IFR (2019) and EU KLEMS (2009).
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D Estimation results

Table D1: Benchmark GMM parameter estimates

ρ σ β γ Obs.

Eqs. (2)-(3) 0.631*** 0.711*** 0.415*** 0.231*** 4501

WIOD (1995-2009) (0.012) (0.013) (0.013) (0.006)

Eqs. (2)-(3) 0.899*** 0.967*** 0.306*** 0.305*** 1449

EU KLEMS (1994-2005) (0.014) (0.019) (0.009) (0.011)

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. All
the models are simultaneously estimated using GMM estimation techniques, with lagged
values of input factors as instrumental variables and HAC robust standard errors.

Table D2: Robustness checks: Estimated elasticities of substitution

Robotic capital δ = 5%

1/ (1− ρ) 1/ (1− σ) Obs.

KR & S {KR, S} & U
Eqs. (2)-(3) 2.764 3.310 4501

WIOD (1995-2009)
Eqs. (2)-(3) 9.776 15.557 1449

EU KLEMS (1994-2005)

Robotic capital δ = 15%

1/ (1− ρ) 1/ (1− σ) Obs.

KR & S {KR, S} & U
Eqs. (2)-(3) 2.657 3.696 4501

WIOD (1995-2009)
Eqs. (2)-(3) 8.455 67.369 1255

EU KLEMS (1994-2005)

Notes: The estimated coefficients and standard errors are reported in
Table D3.
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Table D3: Robustness checks: GMM parameter estimates

Robotic capital δ = 5%

ρ σ β γ Obs.

Eqs. (2)-(3) 0.638*** 0.697*** 0.416*** 0.248*** 4501

WIOD (1995-2009) (0.011) (0.012) (0.006) (0.006)

Eqs. (2)-(3) 0.897*** 0.935*** 0.319*** 0.308*** 1344

EU KLEMS (1994-2005) (0.014) (0.020) (0.009) (0.011)

Robotic capital δ = 15%

ρ σ β γ Obs.

Eqs. (2)-(3) 0.623*** 0.729*** 0.411*** 0.215*** 4501

WIOD (1995-2009) (0.012) (0.013) (0.006) (0.006)

Eqs. (2)-(3) 0.881*** 0.985*** 0.2999*** 0.295*** 1255

EU KLEMS (1994-2005) (0.015) (0.018) (0.008) (0.012)

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. All
the models are simultaneously estimated using GMM estimation techniques, with lagged
values of input factors as instrumental variables and HAC robust standard errors.

32


	Introduction
	Robotization and labor market related literature
	Data
	The datasets
	Robotic capital penetration in advanced economies

	Estimation strategy and benchmark results
	Parametrics
	Nonparametrics

	Concluding remarks
	Appendix
	The measurement of the robotic capital stock
	Countries and industries
	Descriptive statistics and figures
	Estimation results

