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Abstract:  
Research and development (R&D) tax credit policies often aim to increase investment in research 
and experimentation, with the hope that firms invent new technologies that generate positive 
spillovers. Since most policy designs require that companies make profits to access a tax credit, 
they could also shift firms’ investments towards less risky refinement and exploitation of 
previously patented technologies. We use California’s 1987 tax credit change and strengthen 
identification using same firm but different state inventor location to illustrate such a shift within 
treated firms at their California locations. The shift towards refinement is stronger for firms 
operating in uncertain markets. Firms take advantage of tax credits by deepening invention in areas 
of their previous patenting activity, and this refinement precedes increased valuation and markups. 
Tax credits have strategic and competitive consequences, increasing treated firms’ market 
valuation, as well as negative spillovers, e.g., competitors’ valuation and future patenting success 
wanes. The results hold across a broad array of measures, robustness checks, and tax credit changes 
in other states. 
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1. Introduction 

Research and development (R&D) tax credits typically aim to increase corporate R&D 

spending, arguably because firms cannot fully appropriate the returns to such spending and hence 

underinvest relative to the socially desirable level (Arrow, 1962; OECD, 2014; Becker, 2015; 

Bloom, Van Reenen, Williams, 2019). Much work has established that this intent usually succeeds. 

While early empirical studies provided relatively pessimistic estimations of the impact of tax 

credits on spending (Altschuler, 1988), more recent research has fairly implied elasticities around 

unity or higher (Hall, 1993; Hall and Van Reenen, 2000; Bloom et al., 2002; Dechezleprête et al., 

2019). Hence, there is a consensus that a dollar in lost tax revenue probably results in a dollar or 

more of increased R&D spending (Bloom, van Reenen, and Williams, 2019). 

The original question raised by Hall (1993, see also Chen et al., 2019) remains pertinent, 

however, “…of whether this R&D spending truly reflects increased spending of the sort envisioned 

by Congress (research and experimentation in the laboratory or technological sense), or merely a 

relabeling of related expenses as research, and an increase in such expenses as new-product-related 

market research, etc.” Policy makers often hope that firms engage in basic research and enter new 

technological areas because such efforts generate greater positive externalities, typically in the 

form of knowledge spillovers (Akcigit and Kerr, 2018; Akcigit, Hanley, Serrano-Velarde, 2020).  

Yet, despite the consensus that R&D tax credits increase R&D and patenting, it remains to be 

established how credits (perhaps unintentionally) influence innovative search strategies (i.e., what 

gets invented and patented, in particular, research vs. applications) and how such strategies 

influence performance and competition. 

When firms choose their innovation strategy in the presence of a tax credit, theory suggests 

they should be more likely to choose exploitation of previously successful technologies, because 

tax credits become less attractive in the absence of success and profits (Hall, 2019). This effect 

should be stronger for firms facing greater profit uncertainty.0F

1 We find support for these 

predictions using the 1987 introduction of Californian tax credits as a quasi-natural experiment, 

most convincingly within firms whose inventors locate both inside and outside of the state.  

This paper develops a simple model (detailed in the appendix) which motivates how tax credits 

become less attractive without profits, inducing a shift away from riskier exploration and towards 

                                                 
1The mechanism does not apply to some tax credit schemes that offer refundable credits for loss-making firms. 



3 
 

exploitation of a firm’s current technological expertise. While we confirm prior results that credits 

increase R&D and total patenting, we also find significant shifts in the proportion of patents that 

rely on technologies previously known to the firm (as opposed to patents in technologies that are 

new to the firm). Further, consistent with our proposed theoretical mechanism, this shift is greater 

for firms operating in uncertain markets, in industries with a higher risk of obtaining non-positive 

profits and in R&D intensive industries. The lower fraction of patents in new technology classes 

induces a number of strategic and competitive consequences; for firms affected by the California 

tax credit, it precedes an increase in average markups (estimated using the methodology proposed 

by De Loecker, Eeckhout and Unger, 2020) and an increase in market valuation (Kogan et al., 

2017; Fitzgerald et al., 2020), and for the treated firms’ competitors, it precedes a decrease in 

market valuation (Kurakina, 2021) and an increase in blocked patent applications (Lueck, 

Balsmeier and Fleming, 2020). The results hold across a broad array of robustness checks and 

other tax credits besides the 1987 California change. They are robust towards using a control group 

constructed using coarsened exact matching, limiting the sample to firms with inventors inside and 

outside of California or considering only firms outside of the IT sector. We also obtain qualitatively 

similar results for estimations that do not rely solely on patent measures, for example, the ratio of 

patents to scientific publications (Arora, Belonzon and Sheer, 2020). 

The rest of this paper is organized as follows. In section 2, we discuss the related literature and 

our proposed mechanism of how R&D tax credits affect innovative search. Section 3 details the 

construction of our data set and our identification strategy. Results of our empirical analyses are 

presented in section 4. In section 5, we discuss the implications of our findings for economic theory 

and policy, section 6 concludes.  

 

2. Why and how R&D tax credits might impact value creation and capture 

The theoretical motivation for R&D tax credits emerged from Arrow (1962); firms cannot bear 

the entire risk of invention, are unlikely to succeed in appropriating all the benefits, and this 

remains especially true for basic research and knowledge production, which is often seen as the 

most valuable investment to society. Arguments that emphasize basic research rest on the 

assumption that it generates the most valuable positive externalities to other inventors, mainly 

through knowledge spillovers and diffusion (Nelson, 1959; Griliches, 1992; Hall, 1996; Mohnen, 

1996; Hall and Wosinka, 1999). Policy makers hope that lower costs of R&D induce firms to 



4 
 

conduct basic research, search for novel technologies, and discover breakthroughs – some of which 

will leak and be taken up by other firms, including competitors. The expected spillovers justify the 

subsidies. 

R&D tax credits influence a range of decisions by private firms (Akcigit and Stancheva, 2020) 

and many have commented that firms will use credits to maximize the private returns to their R&D 

investment (Hall, 1993; Hall and Van Reenen, 2000; Bloom, Van Reenen, Williams, 2019). Thus, 

tax credits might not induce the desired investments in or outputs of fundamental knowledge, 

novelty, and desired spillovers, even though exploration of new technologies – “external effort” 

(Akcigit and Kerr, 2018) or “horizontal innovation” (Pless, 2019) – has been argued to provide 

approximately 80% of economic growth (Akcigit and Kerr, 2018). 

Realistically, we would only expect fundamental research in new technologies if firms cannot 

generate higher returns per R&D dollar by exploiting extant technologies. In contrast to other 

mechanisms intended to generate positive externalities, for example, scientific funding programs, 

R&D tax credits are explicitly intended to avoid discriminating between types of inventions, in 

part to keep costs of administration low.1F

2 In the absence of refundable credits that allow loss-

makers to benefit, firms need to generate a profit to take advantage of the tax credit. This may be 

difficult, particularly for those firms operating in a highly uncertain environment (Agrawal, Rosell 

and Simcoe, 2020). The interaction of tax credits and the ability to take advantage of such credits 

could shift R&D investment in ways that subsequently shift a firm’s technological portfolio and 

market power. 

 

Evidence on the effect of tax credits  

Accurately assessing the impacts and foregone opportunities of tax credits presents many 

challenges (Hall, 1993; Akcigit and Stancheva, 2020); partly as a result, much empirical work 

compares incremental R&D investment to lost taxes.  Hall and Van Reenen’s (2000) survey reports 

that credits typically demonstrate an elasticity around or greater than one with respect to R&D, 

with some time lag, presumably due to firms’ adjustment costs, e.g., on-boarding of technical 

professionals (Bloom et al., 2002 estimate similar long-run elasticities in OECD economies); 

                                                 
2 Some R&D tax credit designs were meant to avoid funding of incremental inventions by limiting the tax credit to 
R&D increases beyond prior threshold levels, i.e., only big increases of R&D would be subsidized. However, there 
was no rule saying that increases of R&D expenditures actually need to be directed towards radical inventions.   
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subsequent work uses a variety of methods and samples to estimate elasticities ranging from 1.3 

to 2.6 (Bronzini and Iachini, 2014; Dechezleprêtre et al., 2019; Guceri and Liu, 2019). Chen et al. 

(2019) estimates 1.3, for real R&D investment, as opposed to relabeling, for Chinese firms. Pless 

(2019) shows that tax credits and subsidies are complements for smaller and substitutes for larger 

UK firms, and that small firms invest in product, rather than process, innovations. Agrawal, Rosell 

and Simcoe (2020) demonstrate an increase in R&D by small Canadian firms. 

Other work estimates the impact of credits on innovation outcomes, with ambiguous results. 

Czarnitzki, Hanel, and Rosa (2011) report increased product innovation amongst Canadian 

manufacturers, though Cappelen, Raknerud, and Rybalka (2012) find only increased process 

innovation for Norwegian firms. Bérubé and Mohnen (2009) report positive effects on R&D 

spending outside the U.S. but weaker impact on patenting. Dechezleprêtre et al. (2019) identify 

private value creation (as measured by patents) and positive externalities such as spillovers (as 

measured by future prior art citations) in small U.K. firms. 

Recent work has begun to explicitly investigate the possibility of negative externalities of tax 

credits. Wilson (2009) illustrates a redistribution of R&D spending from unaffected to tax credit 

regions, such that the net effect for the entire U.S. economy might be zero. Structural models 

consider application and process costs including the shadow costs of public funds (Takalo, 

Tanayama, Toivanen, 2013, 2014 and 2017), windfall gains (González, Jamandreu and Pazó, 

2005), or negative externalities on entry (Acemoglu et al., 2018). A few studies consider the 

interplay of tax credits with the patent system and highlight how firms might use tax credits for 

strategic purposes, for example, to raise rivals’ costs (Salop and Scheffman, 1983; Shleifer and 

Vishny, 1989) or steal business from competitors (Bloom et al., 2013). 

 
How do R&D tax credits affect innovative search? 

Assume that firms can allocate their R&D budget across projects that exploit known areas of 

competency or explore areas that are new to the firm. Exploitation focuses on improving existing 

products and technologies and yields a rather low but positive expected return on investment with 

relatively low risk. In contrast, exploration has a higher variance of returns. If successful, 

exploration can yield a higher return than exploitation but also implies a higher risk of failure – in 

which case the firm does not make any profit from innovating. 
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R&D tax credits can usually only be fully used in the current time period if profits net of R&D 

are larger or equal to R&D expenditures. This implies that tax credits provide incentives to engage 

in activities with a lower risk of making zero or negative profits, for example, exploitation 

strategies. The same argument holds for basic (science-based) vs. applied research and for radical 

vs. incremental innovation. To inform these intuitions, we incorporate tax credits into a classic 

model of innovative search (March, 1991; Manso, 2011) in Appendix C. 

It has to be noted that in the absence of profits, tax credits can be carried forward up to 20 years 

to offset taxes on future profits. However, as long as firms discount future payoffs, and in 

particular, if the commercial viability of the firm remains less clear, R&D tax credits still provide 

incentives to focus on exploitation rather than exploration. This effect will be amplified in the 

plausible case that exploration strategies have a longer time lag between investment and return 

than exploitation strategies. This model assumes that the firm operates in a jurisdiction that lacks 

refundable tax credits (which is the case for our empirical context, i.e., the state of California). 

Some firms might generate stable positive profits independent of their innovation activities. 

The mechanism described above is therefore more relevant for firms whose profits rely heavily on 

innovation or who are faced by higher market uncertainty. In the empirical analysis, we show that 

the effects of R&D tax credits are indeed concentrated among firms with high profit uncertainty, 

measured by the standard deviation of profits divided by the absolute amount of profits, in pre-tax 

periods. We also estimate larger effects in industries where the probability of generating non-

positive profits is higher and when investment in R&D is large relative to firms’ revenue.  

 

3. Data and methodological remarks 

Patents and firm-level data 

The main part of our empirical analysis is focused on all public US based firms that filed at 

least one patent between 1977 through 2006 (analogous data on smaller and private firms do not 

exist, thus limited generalizability of the current study). Using this sample as a baseline, we 

supplement it with patent data from PATSTAT (e.g., Balsmeier et al., 2018; Rassenfosse, Dernis, 

and Boedtstock, 2014), stock market data (Kogan et al., 2017), and accounting data from 

Compustat. Measures are aggregated at the firm level based on the application year of a patent. 

Due to the need for patent-based measures, the main sample comprises only firms that applied for 

at least one patent over the whole sample period. Our identification strategy, which relies on 
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changes in state tax law, further limits the sample to firms with U.S. state headquarter location 

information. In order to limit selection in and out of the main sample we require firms to be 

observed at least twice. Table 1 and Appendices provide summary statistics and variable 

definitions. 

 

Table 1 – Summary statistics (1977–1997, California plus control states, firms with patents) 
Variable N Mean Median Sd Min Max 
Eff. R&D Tax Credit % 22257 0.73 0 2.2 0 10.03 
R&D 22257 0.25 0 1.86 0 56.72 
Patents 22257 11.09 0 65.49 0 3638 
Patents Known Tech 22257 10.01 0 64.09 0 3618 
Patents New Tech 22257 1.08 0 2.68 0 53 
Fraction Known Tech 22257 0.25 0 0.39 0 1 
Markup 21759 1.33 1.28 0.34 1 8.01 
Stock Market Value 22257 174.32 0 1882.1 0 126274.2 
SM Value New Tech 22257 12.59 0 94.39 0 5138.08 
SM Value Known Tech 22257 161.73 0 1831.19 0 124154.3 
Fraction Value Known Tech 22257 0.24 0 0.39 0 1 
Blocked EPO Patents 22257 3.54 0 24.08 0 1530 
Strategic Patents 22257 0.32 0 2.25 0 68 
Notes: This table reports summary statistics of the variables used in the study. Eff. R&D Tax Credit is the effective R&D tax credit 
that firms could maximally receive as calculated by Wilson (2009). The nominal rate was 8% since 1987. Patents is the total number 
of eventually granted patents applied for in a given year. Patents Known Tech is the number of patents that are filed in a 3-digit 
technology classes where the given firm has filed within the last 5 years in that class. Patents New Tech is the number of patents 
that are filed in a 3-digit technology classes where the given firm has not filed within the last 5 years in that class (note that this 
variable measures new to the firm technologies and not necessarily new to the world technologies). Stock Market Value is the total 
private value of patents applied in year t, measured as the sum of all market reactions to publications of these patents (data from 
Kogan et al., 2017). SM Value New Tech is the total private value of patents filed in a 3-digit technology classes where the given 
firm has not filed within the last 5 years in that class, measured as the sum of all market reactions to publications of these patents. 
SM Value Known Tech is the total private value of patents filed in a 3-digit technology class where the given firm has filed within 
the last 5 years in that class, measured as the sum of all market reactions to publications of these patents. % Value New Tech is the 
proportion of the latter two variables in percent. Blocked EPO Patents is the total number of blocked patent applications at the 
European Patent Office (EPO), defined as patent applications that were eventually denied by the EPO and referred to at least one 
US patent of the focal firm applied in year t, which was classified as potentially blocking (X or Y citations in the EPO examiner 
search report). Strategic Patents is the total number of patents that fall into the top 10% of the stock market value reactions in a 
given year but not into the top 10% of future citations.  
 

In our empirical analysis, we consider four different samples: 1) patenting firms “treated” by 

the California tax credit change, relative to all patenting firms that were not affected by a tax credit 

introduction, 2) patenting firms “treated” by the California tax credit change, relative to matched 

firms that were not affected by an introduction, 3) inventors of patenting firms “treated” by the 

California tax credit change, relative to the same firm’s inventors at branches outside of California 

that were not affected by a tax credit (enabled by availability of city and state of residence of 

inventors), and 4) U.S. patenting firms “treated” by a series of changing state-level tax credit laws. 

The results remain robust to excluding firms active in SIC codes 357 ‘Computer and Office 
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Equipment’, 366 ‘Communications Equipment’, and 367 ‘Electronic Components’ (Appendix A, 

Table A6). 

While much of the empirical literature on innovation relies on patent data, it is worth 

acknowledging that studies using patent data implicitly assume that innovation output results in 

patents and knowledge is not protected via trade secrets. Some bias is possible as well if riskier 

projects do not result in any patents at all. However, since we are mainly interested in the type of 

innovation induced by R&D tax credits, it is most important in our context that tax credits do not 

change the incentives to protect knowledge via trade secrets relative to patenting. 

 

R&D tax credits 

Between 1980 and 2006, 32 U.S. states introduced R&D tax credits. Because aggregated 

analyses of law changes in a diff-in-diff type of setup may create severe biases (Goodman-Bacon, 

2018; Chaisemartin and D’Haultfoeuille, 2019), we focus on the case of California before 

broadening the analysis to other states. California firms provide a particular interesting case; first, 

because they constitute the largest part of patenting activity within the country, private R&D 

played a crucial role in their widely acknowledged extraordinary growth, and tax credits have been 

underappreciated as a potentially important fuel of that growth. Second, although there are similar 

treated firms in different states and time, they are often not comparable in terms of how the credit 

interacts with other tax laws, which expenses actually qualify for the credit and which firms fulfill 

the eligibility criteria (Hall and Wosinska, 1999). Due to these differences across states, estimating 

an average treatment effect using R&D tax credits across all states and time periods remains 

problematic (see Lerner and Seru, 2017, for examples of unrevealed heterogeneous impacts of 

state law changes on innovation in the recent literature).2F

3 Third, the composition of the treated as 

well as untreated firms changes greatly over time, such that it is difficult to define a common 

control group that suits each state’s R&D tax credit introduction. Fourth, the California R&D tax 

credit was one of the first significant provisions and not of temporary nature, while especially in 

later years, firms outside California may have anticipated further changes in R&D tax credit 

provisions such that the estimated effects might be confounded (Rao, 2016). These arguments 

                                                 
3 We also estimate heterogeneous impacts of R&D tax credit introductions across states and time, as further discussed 
below. 
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notwithstanding, we illustrate qualitatively similar, though quantitatively weaker, effects in the 

Appendix (Table A2) for the effects of subsequent tax credits in states other than California. 

The nominal R&D tax credit introduced by California in 1987 was 8%, before it was raised to 

11% in 1997. To identify the impact of California’s policy change, we restrict the sample to 10 

years before and 10 years after the tax credit introduction and take all firms situated in states that 

had not introduced any R&D tax credit in the sampling period as the control group. Thus, we also 

avoid the confounding effect of California’s introduction of an alternative incremental R&D tax 

credit in 1997. Consistent with our modeling strategies, we remove firms that were only active 

before or only after the tax credit introduction to limit potential influences from self-selection into 

or out of the sample.  

The effective R&D tax credit rate differs sometimes from the nominal rate because of the 

interplay of R&D tax credits with other investment and federal taxes.3F

4 In the main part of our 

study, we focus on the effective rate because it is the source of exogenous variation that drives the 

actual R&D costs of the affected firms. Earlier literature often took the user costs of R&D as their 

main explanatory variable that takes alternative investment opportunities and interest rates into 

account, as introduced by Hall and Jorgenson (1967). While this should reflect actual R&D costs 

more accurately, it incorporates calculations that are predictable by firms, such as interest rates, 

thereby creating endogeneity concerns (Agrawal, Rosell, and Simcoe, 2020; Bloom et al., 2002). 

However, by focusing on the effective rates and the effect of the exact timing of the R&D tax 

credit introduction, we base our identification only on variation that is actually caused by the policy 

change (not interest rates or other extant corporate taxes). This reduces potential endogeneity 

biases and allows us to more accurately relate our findings to the actual introduction of R&D tax 

credits. For easier comparisons with the literature, we also provide estimations based on the user 

costs of R&D calculated according to Hall and Jorgenson (1967) in the Appendices.4F

5 For brevity, 

the body of the paper only presents the estimated coefficients for the effective R&D tax credit rate. 

 

Empirical models 

We estimate variations of the following specification using OLS:  

                                                 
4 The details are explained in Wilson (2009), or specifically for California in Hall and Wosinska (1999). The results 
are qualitatively the same if we take the nominal rate instead of the effective rate as shown in the Appendix, Part A.   
5 We also find similar results based on alternative R&D tax credit rate calculations that exploit the initial distribution 
of inventors across states within the same firm (Bloom, Van Reenen, Schankerman, 2013; Babina and Howell, 2018). 
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𝑌𝑌𝑖𝑖𝑖𝑖 =   𝛽𝛽 ∙ 𝑅𝑅&𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−3 + 𝛿𝛿𝑡𝑡 + 𝑓𝑓𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖   (1) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 stands for our various dependent variables observed for firm i at time t, 𝑅𝑅&𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

is the effective R&D tax credit rate three years before 𝑌𝑌𝑖𝑖𝑖𝑖 is observed, 𝛿𝛿𝑡𝑡 denotes a full set of year 

fixed effects to control for varying macroeconomic conditions, 𝑓𝑓𝑖𝑖 controls for time-invariant 

unobserved firm and state characteristics that may confound our identification of 𝛽𝛽, and 𝜀𝜀𝑖𝑖𝑖𝑖 is the 

error term.5F

6 

To explore potential adjustments of firms to R&D tax credit provision over time (Hall, 1993), 

and test for pre-treatment trends, we alternatively estimate a more flexible version where we allow 

the effect of the R&D tax credit introduction to vary over time. Instead of the R&D tax credit rate 

in (1) we include dummy variables for each of the 5 years before and 10 years after the policy 

change and leave the rest of the specification unchanged. The coefficients of 𝛽𝛽−5,..,−1 serve as a 

placebo test on whether firms may have expected changes in R&D tax credits or systemically differ 

from firms situated in non-affected states before the treatment.  

𝑌𝑌𝑖𝑖𝑖𝑖 =  ∑ 𝛽𝛽𝜏𝜏10
𝜏𝜏=−5 ∙ 𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝑓𝑓𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖     (2) 

 

Matching methodology 

In order to address concerns that differences between California firms and firms in the control 

group might confound our estimations, we also estimate models based on a sample of California 

and other firms that are comparable in observable firm characteristics and industry composition. 

Before matching, California firms are on average significantly more R&D intensive, younger 

and smaller compared to the average firm outside of California. California firms are also 

overrepresented in the manufacturing sector and underrepresented in the transportation and 

construction sector. If R&D tax credits are more (or less) effective for firms with those 

characteristics or in certain sectors, our baseline estimates might not be representative for the 

average effects of R&D tax credits on those outcomes.    

                                                 
6 As we discuss below in more detail, our results are robust towards alternative specifications resembling a classic 
DiD setup where the treatment indicator is a dummy instead of the effective tax rate, IV estimations where R&D user 
costs are used as an instrument, additional firm level controls such as R&D expenditures, firm age and total assets, 
and alternative lags of the tax credit rate at  t-2 or t-4 (while Akcigit and Stancheva (2020) indicate a three year lag is 
appropriate, see Appendix A, Table A3 to A9, for robustness checks). 
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To balance the sample with regard to the aforementioned characteristics, we apply Coarsened 

Exact Matching (CEM). CEM has the advantage over classic matching procedures, like propensity 

score matching, to balance across the entire distribution of observables, which improves causal 

inference (for details and comparison see Iacus, King, and Porro, 2012, 2017; and King and 

Nielsen, 2017). The matching procedure identifies for each California firm the most similar firm 

in the control group. To maximize similarity at time of treatment we match on firms’ average R&D 

intensity, age, and size in 1987 and 1986 plus firms’ industry affiliation. The CEM algorithm 

identified matches for 405 out of 419 California firms. We find no statistically significant 

differences in terms of all matching characteristics after matching (see Appendix, Table A10). 

 Firm-state level analysis 

We additionally address concerns about potential biases from unobserved differences in 

affected and control group firms by exploiting different locations of R&D labs within firms, i.e. 

we take the patenting activity of inventors that work in other US states than California (and hence 

not affected by the introduction of R&D tax credit over the whole sampling period) as the control 

group for inventors of the same company working inside California (front page patent data which 

include the inventor’s home town and state enable this). Within firm changes are to be expected 

because in principle only R&D expenses occurred in California qualify for the California tax credit 

(Ibele, 2003).6F

7 For patent-based measures7F

8, we thus estimate a variant of equation (1) at the firm-

lab location-year level: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽 ∙ 𝑅𝑅&𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖−3 + 𝑓𝑓𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑠𝑠 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖      (3) 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 stands for dependent variables observed for firm i’s labs in state s at time t, 

𝑅𝑅&𝐷𝐷 𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖−3 is the effective R&D tax credit rate three years before 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is observed, 𝑓𝑓𝑖𝑖𝑖𝑖 

denotes firm-year fixed effects which absorb all firm-specific shocks such as changes in 

productivity or organization, and 𝜎𝜎𝑠𝑠 captures unobserved location specific differences that may 

confound our identification of 𝛽𝛽, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the error term. 

This approach is arguably the least likely to be confounded as it solves the problem of using 

firms outside California as a control group. It may underestimate the corporate-level effect, 

                                                 
7 Since California firms may still temporarily send inventors hired in California to help inventors at other labs outside 
of California, the rule is not as sharp as it appears at first sight.   
8 Unfortunately, firms’ R&D expenses cannot be broken out by lab location but the spatial distribution is likely to be 
highly correlated with the spatial distribution of inventors. 



12 
 

however, since inventors in the control group might still be similarly but less directly affected as 

their California-based counterparts. The results based on the within firm sample will thus likely 

indicate a lower bound of the estimates but may also be interpreted as a within-firm shift of 

innovation activity. Since the location information come from the inventors on the original patent 

publications by the USPTO and do not rely on firm addresses, it should also alleviate concerns 

with respect to potentially inconsistent headquarter location data in Compustat (Atanassov and Lu, 

2019) or concerns with respect to reassigning and relabeling of research activities (Chen et al., 

2019). 

The results presented below draw on the sample of firms that have a lab inside of California 

and at least one outside of California, where no R&D tax credit was introduced during the sampling 

period. Noteworthy, all results are robust to excluding firms with headquarters inside of California 

and considering only firms with headquarters outside of California.   

 

4. Results 

R&D expenses and patents 

Our main hypothesis proposes that firms that can claim R&D tax credits will shift their 

innovation strategies towards exploitation, and that this effect will be greater for firms operating 

in more uncertain environments. Before testing these predictions, we confirm prior results in the 

tax credit literature. Since increase in R&D may need some time to be reflected in patent 

applications we regress our outcome variables on the effective R&D tax credit rate in t-3 (see 

corresponding graphs of a more flexible model). Dependent variables are all taken as log (𝑌𝑌 +1). 

Table 2 shows results for the effective tax credit rate and a) R&D expenditure and b) total number 

of patents applied for in year t, with and without matching. 

The results in columns (c) and (d) of Table 2 indicate that one percentage point increase in R&D 

tax credits leads on average to an increase of R&D expenditures (for the matched sample) of about 

3.5% and an increase in patenting of 3.7%, three years after its introduction. The estimated effect 

is larger than in most previous studies, which is due to our focus on patenting firms (which is 

necessary for distinguishing exploration and exploitation strategies). 
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Table 2 – The impact of R&D tax credits on R&D and patenting 

 a b c d e 
  R&D Patents R&D Patents Patents 

 Original sample After matching Firm-state 
level 

R&D tax credit ratet-3 5.366*** 4.539*** 3.427*** 3.656*** 5.020*** 
  (0.524) (0.344) (0.582) (0.474) (0.662) 
      
N 22257 22257 12590 12590 30825 
Year FE yes Yes yes yes yes 
Firm FE yes Yes yes yes yes 
Lab location FE no No no no yes 
R2 0.892 0.809   0.882 0.783 0.2389 
Notes: All dependent variables are measured in logarithmic form. R&D tax credit is the effective rate as 
calculated by Wilson (2009). OLS regressions, heteroscedasticity-robust standard errors are clustered at the state 
level. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, respectively. 

 
 

Figure 1 illustrates the yearly trends of the full model (2), revealing how R&D expenditures 

responded to the introduction of tax credits across different years. There are no significant pre-tax 

credit differences between affected and non-affected firms and, consistent with prior studies, we 

find an increasing impact over time.  

 

Figure 1: Yearly impact of the California tax credit of 1987. 

 

Evidence on changes in innovative search 

While tax credits appear to increase the total amount of patenting, it remains unclear whether 

firms shift towards more fundamental research envisaged by the Congress or whether they 

intensify development of their extant technologies. We empirically test heterogeneous effects in 

this respect by separately considering firm’s patents filed in technological areas that are known to 
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the firm as opposed to those patents that are filed in technological areas which are new to the firm. 

We draw on the original technological classification of each patent assigned by the USPTO. 

Technological areas of patenting are considered known to firm if the given firm filed at least one 

other patent in the 1 to 5 years prior to the observed patent in the same class.8F

9 Other patents are 

labeled as new to the firm if the firm did not patent in that technology class in years t-1 to t-5.  

Table 3 presents the results of separate regressions of patents in “known to the firm” technology 

classes (column a), new-to-the-firm technology classes (column b), and the ratio of patents in 

known-to-the-firm technology classes over patents in new-to-the-firm technologies (column c) for 

the original sample (Panel A), the matched sample (Panel B), and the firm-state sample (Panel 

C).9F

10 

All estimates indicate a strong positive response in patenting in technological areas known to 

the firm. Relative to other firms outside of California, we also observe a small increase in patenting 

in new to the firm technological areas (Panels A and B). This increase seems to be driven by labs 

outside of California, however, since the within-California results indicate a decrease in new to 

the firm patenting in California-based labs relative to the same firm’s labs outside of California 

(Panel C). Regressions of the ratio of patenting in known to the firm technological areas (column 

c) all show a shift towards exploitation. Figure 2 illustrates the differential impact graphically. 

These results support the argument that tax credits precede a shift in the types of patenting 

outcomes from new-to-the-firm technologies towards known to the firm technologies. Because tax 

credits increase the absolute amount of patenting, the absolute numbers of new technology patents 

also increase in two of the three samples. As predicted by theory, we consistently observe, 

however, a shift in innovative search towards exploitation, i.e. an increase in the proportion of 

patenting in known to the firm technologies over patenting in new to the firm technologies.  

While our analysis in the main body focuses on this simple measure, an array of robustness 

checks in the Appendix support the result that R&D tax credits are associated with a stronger focus 

on exploitation, including evidence of (1) a higher proportion of patents per scientific publication 

(Arora, Belonzon, Sheer, 2020), (2) a declining reliance on basic research proxied by the fraction 

of backward citations to the non-patent (typically science) literature, (3) an increased reliance on 

                                                 
9 Results are robust to considering the entire patent stock of each firm and alternative technological classifications at 
the CPC three-digit level. 
10 Reflecting the state-level analysis in Panel C, new-to-the-firm patents are defined as new-to-the-state-lab patents. 
Results look similar when we use new-to-the-entire-firm to classify exploration patents. 
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firms’ own technologies as measured by increased fraction of self-citations, and (4) an increased 

preference for known technologies based on the distribution of the firm’s patents in a given year, 

compared to the firm’s extant patent portfolio, measured as the technology class-based overlap 

held by the same firm up to t-1 and the patents applied in t, for five year windows (Fitzgerald et. 

al., 2020). We document these results in Table A11. 

We also experimented with count data regressions for specifications using the number of 

patents as the dependent variables. Results documented in Table A12 in the Appendix show that 

we reach very similar conclusions based on models assuming a Poisson distribution.10F

11    

In order to test the proposed mechanism – that R&D tax credits shift innovative search to 

exploitation due to the risk of generating profits that remain too low to take full advantage of the 

tax credit – columns d and e of Table 3 show how the ratio of patents in known technology classes 

to patents in new technology classes responds to R&D tax credits, depending on profit uncertainty. 

We compute a measure of uncertainty as the standard deviation of profits divided by the absolute 

amount of average profits.11F

12 Standard deviations and average profits are measured over the period 

of 1977 to 1987, i.e., the years before the introduction of tax credit in California, to reduce 

endogeneity concerns. The baseline results indicate that one percentage point increase in the 

effective tax credit rate is associated with approximately 7% increase in the ratio of old to new 

technologies. Consistent with our proposed mechanism, this effect is significantly higher for firms 

that face levels of uncertainty above the median.  

  

                                                 
11 A disadvantage of the Poisson regression models is that we either have to drop firm fixed effects or limit our sample 
to firms with a change in the number of patents over time. For this reason, we only use them as robustness check and 
prefer to work with linear models as our baseline specification. However, as Table A12 shows, count data regressions 
with and without firm fixed effects yield very similar results.  
12 Similar to Czarnitzki and Toole (2011) who employ a measure of uncertainty based on the standard deviation of 
sales per employee. 
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Table 3 – The impact of R&D tax credits on known vs. new to the firm technologies 

Panel A: Original sample High 
uncertainty 

Low 
uncertainty 

 a b c d e 

  Known tech New tech Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

R&D tax credit ratet-3 5.167*** 1.544*** 3.624*** 4.170*** 2.325*** 
  (0.355) (0.221) (0.280) (0.255) (0.347) 
      
N 22,257 22,257 22,257 10,335 11,922 
Year FE yes yes yes yes yes 
Firm FE yes yes yes yes yes 
R2 0.839 0.604 0.607 0.367 0.695 

Panel B: Matched sample High 
uncertainty 

Low 
uncertainty 

 a b c d e 

  Known tech New tech Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

R&D tax credit ratet-3 4.167*** 1.341*** 2.825*** 3.608*** 1.629** 
  (0.466) (0.263) (0.391) (0.356) (0.616) 
      
N 12,590 12,590 12,590 6,542 6,048 
Year FE yes yes yes yes yes 
Firm FE yes yes yes yes yes 
R2 0.806 0.564 0.551 0.367 0.655 

Panel C: Firm-state sample High 
uncertainty 

Low 
uncertainty 

 a b c d e 

  Known tech New tech Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

R&D tax credit ratet-3 4.571*** -0.695*** 5.267*** 9.377*** 3.604*** 
  (0.550) (0.143) (0.519) (1.413) (0.492) 
      
N 25,125 25,125 25,125 5,345 19,780 
Firm x Year FE yes yes yes yes Yes 
Lab location FE yes yes yes yes Yes 
R2 0.323 0.320 0.328 0.405 0.317 
Notes: All dependent variables are measured in logarithmic form. R&D tax credit is the effective rate as 
calculated by Wilson (2009). Patents in known technological areas is the number of patents that are filed in a 
3-digit technology class where the given firm has filed beforehand in that class. Patents in new technological 
areas is the number of patents that are filed in a 3-digit technology class where the given firm has never filed 
beforehand in that class (note that this variable measures new to the firm technologies and not necessarily new 
to the world technologies). OLS regressions, heteroscedasticity-robust standard errors are clustered at the state 
level. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, respectively. 
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Figure 2: Yearly impact of the California tax credit on known vs. new to firm technologies 

 

While the unconditional probability of non-positive pre-tax profits in a given firm year in our 

sample is about 9%, it is about 13.4% in the high-uncertainty subsample but only 3.4% in the 

subsample of firms that operate in industries with uncertainty below the median. To check the 

determinants of profit risk, we estimated Probit models in which we relate the probability of non-

positive profits in a given firm-year to our high-uncertainty indicator, a dummy indicating firms 

with positive R&D expenditures and the exploitation ratio, controlling for time dummies. Results 

documented in Table 4 confirm that – conditional on R&D activity and the ratio of exploitation to 

exploration patents – the risk of no taxable profits is between 7 and 10 percentage points larger in 

industries with high uncertainty. Firms engaging in R&D face a risk of zero profits that is about 

2.6 percentage points higher. Further, an increase in the exploitation ratio by one log point reduces 

the profit risk by about one percentage point. As an alternative measure of profits, we also 

experimented with earnings before interest and taxes (EBIT) which even yields a larger association 

between our variable of interests and zero profits (see columns c and d). Although the estimates 

do not necessarily have a causal interpretation, the results are consistent with our proposed 

mechanism. The risk of zero or negative profits depends on R&D activity and is higher in more 

uncertain environments; and firms seem to be able to reduce this risk by focusing on exploitation 

rather than exploration. 
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Table 4 – Determinants of non-positive profits 

 a b c d 
  Full sample California Full sample California 

Profit measure Pre-tax 
profits 

Pre-tax 
profits EBIT EBIT 

High uncertainty 0.102*** 0.070*** 0.172*** 0.144*** 
 (0.001) (0.004) (0.002) (0.005) 
D(R&D>0) 0.026*** 0.027*** 0.136*** 0.105*** 
 (0.001) (0.003) (0.002) (0.006) 
Exploitation ratio -0.012*** -0.010*** -0.058*** -0.051*** 

 (0.001) (0.877) (0.002) (0.003) 
N 240,742 22,207 231,091 21,934 
Year FE yes yes yes yes 
Pseudo R2 0.073 0.104 0.071 0.089 

Notes: The dependent variable takes value one if profits are zero or negative. All models are 
Probit regressions. Table shows marginal effects. Heteroscedasticity-robust standard errors 
shown in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, 
respectively. 

 

Table 5 illustrates the association between risk and exploitation with industry-level splits. In 

Panel A, we calculate a direct measure of profit risk, based on the share of firm-years with zero or 

negative profits at the industry-level, using only years before the introduction of the credit. Panel 

B shows results based on industry-level R&D intensity, again from the years before introduction. 

In industries with a high level of R&D intensity, innovation activity is likely to be an important 

determinant of firms’ profits which is essential for our proposed mechanism. Table 5 shows that 

R&D tax credits induce exploitation mostly in industries with high profit risk and R&D intensity.12F

13  

  

 

 

 

 

 

 

 

                                                 
13 We measure profit risk and R&D intensity at the industry-level to reflect exogenous technological and market 
characteristics and to avoid that our sample split is affected by the success of firms’ innovative activity. 
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Table 5 – The impact of R&D tax credits on known vs. new to the firm technologies: 
sample splits according to industry-level profit risk and R&D intensity 

Panel A: Industry-level profit risk     
 a b c d e f 

 Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

Exploitation 
ratio 

Profit risk high low high low high  low 
Sample Original Original Matched Matched Firm-state Firm-state 
R&D tax credit ratet-3 4.050*** 1.436*** 3.206*** 1.193* 5.754*** 2.675*** 
 (0.345) (0.372) (0.578) (0.577) (0.886) (0.641) 
       
N 11,121 11,136 7,234 5,356 11152 13973 
Year FE yes yes yes yes no no 
Firm FE yes yes yes yes no no 
Firm-year FE no no no no yes yes 
State FE no no no no yes yes 
R2 0.557 0.621 0.483 0.602 0.366 0.308 

 

Panel B: Industry-level R&D intensity 
R&D intensity high low high low high  low 
Sample Original Original Matched Matched Firm-state Firm-state 
R&D tax credit ratet-3 3.491*** 1.777*** 2.960*** 1.095* 5.940*** 1.667** 
 (0.445) (0.423) (0.600) (0.439) (0.895) (0.806) 
       
N 11,039 11,218 7,620 4,970 13008 12117 
Year FE yes yes yes yes no no 
Firm FE yes yes yes yes no no 
Firm-year FE no no no no yes yes 
State FE no no no no yes yes 
R2 0.557 0.621 0.483 0.602 0.358 0.302 

Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. Heteroscedasticity-robust 
standard errors are clustered at the state level and shown in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 
10% level, respectively. 
 
 
Implications of tax credits and a shift in innovation: increasing markups 
 

Even though R&D tax credits shift the proportion of innovation away from new areas, they still 

increase the absolute number of patents in new areas, and thus arguably meet policy goals of 

increased investment in fundamental research. Here, we investigate probably unintended side 

effects, however, and illustrate how credits lead to technological entrenchment that in turn leads 

to increased markups by already established incumbents. 

To investigate whether this is the case, we analyze the effect of R&D tax credits on markups, 

defined as prices over marginal costs. As common in the literature, we do not have direct 
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information about firms’ prices and marginal costs. We therefore structurally estimate markups 

from production functions following De Loecker and Warzynski (2012) and De Loecker, Eckhout 

and Unger (2020).13F

14 An advantage of the production-based approach is that it can be estimated 

using standard balance sheet data which is available across a broad set of firms, industries and time 

periods, which is essential for our application. A further advantage of this approach is that we do 

not have to make strong assumptions about demand to derive markups. 

Our starting point is an industry-specific production function (F(.)) where output (Q, measured 

as deflated sales) of firm i in industry j and time t is a function of variable production factors (V, 

measured as cost of goods sold), capital (K) and total factor productivity (𝛺𝛺𝑖𝑖𝑖𝑖): 

𝑄𝑄𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑗𝑗(𝑉𝑉𝑖𝑖𝑖𝑖,𝐾𝐾𝑖𝑖𝑖𝑖)𝛺𝛺𝑖𝑖𝑖𝑖 

Assuming firms minimize costs and take the production function as given, the first order condition 

yields an expression for a firm’s markup (𝜇𝜇𝑖𝑖𝑖𝑖), defined as the ratio of price to marginal costs: 

𝜇𝜇𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑄𝑄𝑖𝑖𝑖𝑖
𝜕𝜕𝑉𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖𝑖𝑖
𝑄𝑄𝑖𝑖𝑖𝑖

𝑃𝑃𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖
𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

=𝜃𝜃𝑖𝑖𝑖𝑖
𝛼𝛼𝑖𝑖𝑖𝑖

 

The revenue share (α) is observed in balance sheet data, the output elasticity of variable inputs (θ) 

can be estimated from a production function. 

We experiment with alternative functional forms of F(.). In our baseline specification, we rely 

on a Cobb-Douglas production function: 

𝑞𝑞𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 

where the lower-case letters denote logs, 𝜔𝜔𝑖𝑖𝑖𝑖 is log total factor productivity and 𝑢𝑢𝑖𝑖𝑖𝑖 captures 

measurement error in output and 𝛽𝛽𝑣𝑣 and 𝛽𝛽𝑘𝑘 denote elasticities to be estimated.  This yields a 

constant elasticity across firms within industries: θ𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑣𝑣. Although restrictive, the Cobb Douglas 

production function has the advantage that any bias in elasticities (which could for instance stem 

from using sales as a proxy for output or measurement error in firms’ capital stocks), and thus any 

bias in markups, is constant across firms within industries and time periods. For the Cobb Douglas 

specification, all variation in markups within industries over time stems from variation in the 

revenue share of variable inputs. Since we are interested in relative variation in markups within 

firms across time rather than a cross-sectional comparison of firms, the remaining bias is of less 

importance in our application. 

                                                 
14 De Loecker and Scott (2016) and De Loecker, Eckhout and Unger (2020) provide evidence that markups from this 
approach are similar to those from a demand approach, commonly employed in the industrial organization literature, 
for selected industries where prices and quantities are available. 
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We also estimate translog production functions which allow elasticities to vary with input use 

and therefore across firms and time periods. We use a version of the translog production function 

proposed by De Loecker, Eckhout and Unger (2020): 

𝑞𝑞𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖2 + 𝛽𝛽2𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖2 + 𝜔𝜔𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑖𝑖 

For estimation, we use the two-step estimation method proposed by Ackerberg, Caves, and 

Frazer (2015). Demand for variable inputs is assumed to depend on an invertible function which 

depends on capital, R&D, and total factor productivity (TFP). This allows specifying a first stage 

equation which controls for productivity using a nonparametric function in R&D (𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖), capital 

and variable inputs: 𝑞𝑞𝑖𝑖𝑖𝑖 =  𝜙𝜙(𝑣𝑣𝑖𝑖𝑖𝑖, 𝑘𝑘𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + 𝑢𝑢𝑖𝑖𝑖𝑖. This stage does not identify any coefficients 

from the production function but allows us to net out measurement error 𝑢𝑢𝑖𝑖𝑖𝑖. We approximate 𝜙𝜙(. ) 

using a fourth order polynomial in v, k and rd.   

Following Dorazelski and Jaumandreu (2013), we allow the law of motion for the productivity 

process to depend on R&D: 𝜔𝜔𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝜔𝜔𝑖𝑖,𝑡𝑡−1, 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖)+Ϛ𝑖𝑖𝑖𝑖, where we approximate the unknown 

function g(.) by a fourth order polynomial. The law of motion yields the following moment 

condition for variable inputs: E[Ϛ𝑖𝑖𝑖𝑖(θ𝑖𝑖𝑖𝑖)𝑣𝑣𝑖𝑖,𝑡𝑡−1] =0.14F

15 

A potential concern with the estimated elasticities is that they might be affected by unobserved 

price variation across firms (see, for instance, Bond et al., 2020). To address this problem, we 

follow two alternative approaches as a robustness check. First, De Loecker, Eckhout and Unger 

(2020) show that the output price bias can be addressed by controlling for the determinants of 

markups which are captured by market shares and time in the first stage. Second, we use an 

alternative approach developed by Forlani et al. (2016) which allows estimating elasticities from 

a function that explicitly relates sales to input factors and is thus not affected by price bias. A 

drawback of their approach is that they have to impose additional assumptions on the demand side 

and – in the absence of price data – can only identify markups up to scale (or precisely under 

constant returns to scale). Due to these additional assumptions, we do not use their method as our 

baseline equation but employ it only as a robustness check. 

 

 

                                                 
15 Note that this specification allows R&D to impact productivity but it does not assume that a relationship exists as 
the estimation could yield coefficient values of zero for variables in g(.) that are a function of R&D. 
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Table 6 – R&D tax credits and markups 

  a b 

 original 
sample 

after 
matching 

R&D tax credit ratet-3 0.594*** 0.503*** 
 (0.099) (0.170) 
   
N 21759 12237 
Firm FE yes yes 
Year FE yes yes 

Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, 
estimated following De Loecker, Eckhout and Unger (2020). R&D tax credit is the effective 
rate as calculated by Wilson (2009). OLS regressions, heteroscedasticity-robust standard errors 
are clustered at the state level. ***, **, * indicate statistical significance at the 1%, 5%, 10% 
level, respectively. 

 

Table 6 shows results from regressions relating markups to tax credits. Estimates for the original 

and the matched sample are depicted in columns a and b, respectively. The results indicate that an 

increase in tax credits by 10 percentage points is associated with an increase in prices relative to 

marginal costs between 5% and 6%.  Table B1 in Appendix B shows that the effects of tax credits 

on markups are robust towards using different markup measures derived from alternative 

specifications of production functions.15F

16 First, we allow for time-varying production function 

coefficients in the Cobb-Douglas. Second, we derive markups from a translog production function 

in which elasticities vary with input use and are therefore firm-year specific. Third, we control for 

selling and general administrative expenses (SGA) as a measure of fixed costs in the production 

function and market share as a determinant of pricing heterogeneity within industries. Fourth, we 

implement an alternative estimator of production functions following Forlani et al. (2016). Finally, 

we follow De Loecker and Warzynski (2012) and analyze to which extent markups can be 

explained by increasing productivity. Since previous research has shown that R&D tax credits are 

associated with productivity growth (e.g., Bloom, Schankerman and van Reenen, 2013), it is 

possible that markups simply rise because of lower marginal costs and incomplete pass-through of 

costs to consumer prices.16F

17 For this purpose, we control for a third-order polynomial in measured 

(revenue-based) total factor productivity (TFP) to account for firm-specific changes in efficiency 

                                                 
16 We mostly follow De Loecker, Eckhout and Unger (2020), who discuss the various methods in detail, in the choice 
of these alternative production functions. 
17 It has to be noted, however, that previous estimates of productivity in the tax credit literature are revenue-based 
measures of productivity which are potentially affected by prices. It is therefore possible that at least part of the 
productivity effects attributed to tax credits are due to increases in prices. 
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over time. The idea is that conditional on productivity, variation in markups stems from changes 

in prices rather than changes in marginal costs.17F

18 All these robustness checks confirm the positive 

effect of R&D tax credits on markups. 

If the increase in markups in response to R&D tax credits is driven by changes in innovative 

search strategies, we should see that markup increases are concentrated among firms with a 

relatively high profit variation, i.e., among firms whose incentives for exploitation strategy are 

most affected by tax credits. For this purpose, we estimated heterogeneous effects for firms whose 

average profit uncertainties are below and above the median respectively. Again, we measure 

product market uncertainty as the standard deviation of profits divided by the absolute amount of 

average profits. Standard deviations and average profits are measured over the period 1977 to 

1987, i.e., the years before the introduction of tax credit in California, to reduce endogeneity 

concerns.  Results depicted in Table 7 indicate that markup increases are indeed driven by firms 

with high uncertainty in the years before the R&D tax credit. As Table B2 in Appendix B shows, 

our results are robust towards an industry-level measure of uncertainty which is simply computed 

as the average value over all firms within a 4-digit SIC industry. 

Panel B shows the results of a sample split according to an industry-level measure of profit risk, 

based on the share of firms with zero or negative profits before the introduction of tax credits. The 

results show that the effects of tax credits on markups are concentrated in industries with high 

profit risk which is consistent with our uncertainty sample split and our proposed mechanism. 

As a plausibility check, we also analyzed whether the effects of tax credits are driven by R&D 

activity. For this purpose, we split the sample according to whether a firm was engaged in R&D 

at any time during the sample period. Results in Table 8, Panel A, show that the effect of tax credits 

on markups is indeed solely driven by firms that perform R&D, both in the original and in the 

matched sample. 

 

 

 

 

                                                 
18 Note that our measure of revenue TFP might partly capture variation in output prices as well.  Hence, the estimated 
price increase should be regarded as a lower bound since TFP partially captures pricing heterogeneity within industries 
and might thus eliminate some of the variation in markups that stems from market power. 
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Table 7 –Tax credits and markups: heterogeneity by uncertainty 

 a B c D 
 Original sample Matched sample 
Panel A: Sample split based on market uncertainty 

 Subsample: High 
uncertainty 

Low 
uncertainty 

High 
uncertainty 

Low 
uncertainty 

R&D tax credit ratet-3 1.100*** 0.088 1.020*** -0.054 
  (0.218) (0.115) (0.353)   (0.243) 
     
N 10172 11587 6424    5813 
Year FE yes Yes yes Yes 
Firm FE yes Yes yes Yes 
R2 0.622 0.784 0.608 0.736 
Panel B: Sample split based on profit risk 
 Subsample: High risk Low risk High risk Low risk 
R&D tax credit ratet-3 0.919*** -0.138    0.869** -0.182 
  (0.195) (0.112) (0.310) (0.169) 
     
N 10717 11035 6943 5291 
Firm FE yes Yes yes Yes 
Year FE yes Yes yes Yes 
R2 0.673 0.769 0.633 0.754 

Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, 
estimated following De Loecker, Eckhout and Unger (2020). R&D tax credit is the effective 
rate as calculated by Wilson (2009). The high (low) uncertainty subsample consists of firms 
whose standard deviation of profits divided by the absolute amount of average profits in the 
years before 1987 are above (below) the sample median. OLS regressions, heteroscedasticity-
robust standard errors are clustered at the state level. ***, **, * indicate statistical significance 
at the 1%, 5%, 10% level, respectively. 

 

 

 

Table 8 –Tax credits and markups: heterogeneity by R&D activity 

 a b c d 
 Original sample Matched sample 
Panel A: Firms with and without R&D activity  
 Subsample: R&D no R&D R&D no R&D 
R&D tax credit ratet-3 0.713*** -0.070 0.615*** -0.082 
  (0.129) (0.069) (0.211)   (0.217) 
     
N 15932 5827 10026 2211   
Year FE Yes Yes yes yes 
Firm FE Yes Yes yes yes 
R2 0.664 0.814 0.635 0.844 
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Panel B: Sample split by industry-level R&D intensity 
 Subsample: High R&D low R&D High R&D low R&D 
R&D tax credit ratet-3 0.770*** 0.188*** 0.560* 0.221* 
  (0.214) (0.057) (0.308)   (0.114) 
     
N 10673 11079 7319 4915   
Year FE yes Yes yes yes 
Firm FE yes Yes yes yes 
R2 0.639 0.802 0.616 0.817 

Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, 
estimated following De Loecker, Eckhout and Unger (2020). R&D tax credit is the effective 
rate as calculated by Wilson (2009). The high (low) R&D subsample consists of firms whose 
industry-level R&D in the years before 1987 are above (below) the sample median. OLS 
regressions, heteroscedasticity-robust standard errors are clustered at the state level. ***, **, * 
indicate statistical significance at the 1%, 5%, 10% level, respectively. 

 

A potential concern is that firms engaging in R&D might differ in their managerial ability and 

other characteristics from remaining firms. Therefore, Panel B shows results of a sample split 

according to industry-level R&D intensity. The estimates indicate that the effects of tax credits on 

markups are more pronounced in industries with an R&D intensity above the median. 

Table B3 in Appendix B shows that our markup results are robust towards using alternative 

measures of tax credit exposure. Specifically, our conclusions are very similar if we relate markups 

to the effective R&D tax credit rate in t-2 or t-4 (instead of t-3) or if we replace the effective rate 

by the nominal rate or a measure of R&D user costs, which is inversely related to R&D tax credits. 

As documented Table B4 in Appendix B our results for markups and R&D tax credits hold not 

only for the California experiment but also in the full sample which includes all years and states 

(though results are weaker, which may reflect smaller credits or competition between states). 

Within the full sample, the results seem to be entirely driven by firms that patent and by firms that 

engage in R&D, which is consistent with R&D tax credits affecting markups via innovation 

strategies. 

Having established how tax credits influence search strategy, and that a shift towards 

exploitation strategies precedes increased markups, we now investigate the valuation, market, and 

competitive implications of R&D tax credits. There is no rule that requires firms to share the 

benefits such as the new knowledge generated through tax credit money with other firms. Instead 

firms have all the incentives to limit spillovers and exclude others from using their inventions – 

for example, by patenting defensively and strategically, with the intent to block others from 

following in their technological wake. Here we show a suite of outcomes consistent with this 
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possibility, including an increase in stock market valuation of the treated firms and a decrease in 

stock market valuation of the closest competing firm, defensive and strategic patenting by treated 

firms, and decreased entry into new markets by treated firms.  

 

An increase in treated firm stock valuation 

Firms which took advantage of the tax credit experienced increased stock market valuations in 

subsequent years. Table 9 estimates a variety of models based on stock market reaction to patent 

issuance (using patent values estimated by Kogan et al., 2017). Most of the value increase 

correlates with patenting in known technologies. 

We offer approximations of the value of these credits to California firms based on the following 

assumptions. Given the average portfolio value of $165.55 million US dollar (in dollar values of 

1982), these assumptions imply an absolute return of $7.97 million in 2015 US dollars per one 

percentage point increase in R&D tax credit per firm, which implies $109.2 million per California 

firm, and $37.7 billion in total for all California firms in the sample. The amount may be 

underestimated as we only take publicly listed and patenting firms into account that were active 

before and after the tax introduction. This estimate ignores other potential positive impacts from 

additional firms that might have moved to California because of the R&D tax credit being in place, 

or positive spillovers to other firms. 
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Table 9 – Impact of the California tax credit of 1987 on financial patent value as measured 
by stock market impact – exploitative vs. explorative patents 

 
Panel A: Original sample    

 a b c d 

  
Stock market 

value of patent 
portfolio 

Value of 
patents in 

known 
classes 

Value of 
patents in 

new classes 

Fraction of value 
coming from 

known 
technological areas 

R&D tax credit ratet-3 6.406*** 6.772*** 2.871*** 1.168*** 
  (0.511) (0.485) (0.327) (0.188) 
N 22,257 22,257 22,257 8,963 
Year FE yes yes yes yes 
Firm FE yes yes yes yes 

R2 0.100 0.030 0.064 0.045 
 

Panel B: Matched sample    
 a b c d 

  
Stock market 

value of patent 
portfolio 

Value of 
patents in 

known 
classes 

Value of 
patents in 

new classes 

Fraction of value 
coming from 

known 
technological areas 

R&D tax credit ratet-3 5.243*** 5.606*** 2.469*** 0.789** 
  (0.827) (0.757) (0.515) (0.327) 
N 12,590 12,590 12,590 5,276 
Year FE yes yes yes yes 
Firm FE yes yes yes yes 
R2 0.824 0.823 0.706 0.397 
Notes: All dependent variables but in (d) are measured in logarithmic form. All models are OLS 
regressions. R&D tax credit is the effective rate as calculated by Wilson (2009). Value Known is the total 
private value of patents filed in a 3-digit technology class where the given firm has filed beforehand in 
that class, measured as the sum of all market reactions to publications of these patents. Value New is the 
total private value of patents filed in a 3-digit technology classes where the given firm has not filed 
beforehand in that class, measured as the sum of all market reactions to publications of these patents. 
Fraction Value Known is the proportion of the latter two variables in percent. Heteroscedasticity-robust 
standard errors are clustered at the state level and shown in parentheses. ***, **, * indicate statistical 
significance at the 1%, 5%, 10% level, respectively. 

 

 

A decrease in closest competitors’ valuation 

Knowledge spillovers to other firms provide perhaps the most central argument to justify R&D 

tax credits. Spillovers, however, remain notoriously hard to measure. One common approach is to 

count future cites from other firm’s patents (Jaffe, Trajtenberg, and Henderson, 1993). The main 

downside of this approach is that future cites are not only capturing positive knowledge spillovers 

but also potential business stealing effects, especially when they come from competing firms’ 

patents (Bloom et al., 2013). Further, potentially competing firms that do not enter technological 
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areas of the focal firm or leave that area in response to the tax credit remain unobserved. Those 

firms would typically enter the group of non-citing firms and thus fall into the group of unaffected 

firms. Negative externalities are therefore hard to detect and easy to miss with future cites, creating 

potentially upward bias in assessing positive externalities of tax credits. We address this issue in 

two ways by a) looking at competing firms’ stock valuations and b) at future patent applications 

that are blocked by the treated firms’ patents. 

To measure competing firms’ valuations, we extend the approach of Kogan et al. (2017). 

Instead of measuring the private value of a patent via stock market reactions of the focal firm i, we 

measure – with a very similar technique – the reaction of the closest competing firm j’s stock price 

to the publication of a given patent by i. Allowing stock market reactions to be negative allows 

capture of positive as well as negative externalities of patents. These negative externalities could, 

for instance, arise from business stealing or from blocking competitors from entering technological 

areas of the focal firm. 

To avoid attenuation bias, we focus on the closest competitor instead of considering all potential 

competitors. This is also where negative spillovers are most likely to occur (Bloom, van Reenen, 

and Williams, 2019). We identify the closest technological competitor to a given firm within the 

same industry (three-digit SIC) by following Bloom et al. (2013) and Jaffe (1989) in calculating 

for each competing and focal firm the pair-wise technological proximity based on the distribution 

of patents across technology classes per firm. In particular, we employ the following variant of 

Jaffe’s (1989) technological proximity measure to estimate similarity in technological space of 

firm 𝑖𝑖’s patents and its competing firm 𝑗𝑗’s patents, using patent counts per USPTO three-digit 

technology classes 𝑘𝑘: 

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖,𝑗𝑗 =
∑ 𝑓𝑓𝑖𝑖,𝑘𝑘𝑓𝑓𝑗𝑗,𝑘𝑘
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    (4) 

where 𝑓𝑓𝑖𝑖,𝑘𝑘 is the fraction of patents granted to firm 𝑖𝑖 that are in technology class 𝑘𝑘 such that the 

vector 𝑓𝑓𝑖𝑖,𝑘𝑘 locates the firm’s patenting activity in 𝐾𝐾-dimensional technology space. 

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗 is basically the cosine angle between both vectors and will be zero 

for a given firm-year when there is no overlap between this firm’s patent technology classes with 

competing firm’s technology classes. 𝑇𝑇𝑇𝑇𝑐𝑐ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗 will equal one when the 

distribution of firm 𝑖𝑖’s patents is identical to patents accumulated by firm j. Bloom et al. (2013) 
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study and discuss alternative measures of technological similarity in detail but find little 

differences in their results. 

For each firm we define the one firm with the highest technological proximity within the same 

industry as the closest competitor. Using a similar method to Kogan et al. (2017), we run an event 

study, but measure the reaction of the closest competitor’s stock price around the date of each 

patent granted to the focal firm i based on data from CRSP. Analogous to Kogan et al. (2017), the 

estimate of the economic value of a patent of firm i to the competing firm j (𝜉𝜉𝑖𝑖𝑖𝑖) is constructed as 

the product of the market capitalization of firm j (𝑀𝑀𝑗𝑗), measured at t = – 1, where t = 0 is the date 

of the announcement of firm i’s patent grant, and an estimate of the stock return of firm j (the 

competitor) related to i’s patent issue (Ε�𝑣𝑣𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗�). We further adjust this measure by the number 

of patents granted to firm i (𝑁𝑁𝑖𝑖) on day t and the unconditional probability of success of a patent 

application 𝜋𝜋� (56% according to Caley, Hedge, and Marco, 2014). Analogous to Kogan et al. 

(2017), the economic value of a patent to its closest competitor is defined as: 

𝜉𝜉𝑖𝑖𝑖𝑖 = (1 − 𝜋𝜋�)−1 1
𝑁𝑁𝑖𝑖
Ε�𝑣𝑣𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗�𝑀𝑀𝑗𝑗.       

The patent related cumulative expected stock return of the competing firm Ε�𝑣𝑣𝑖𝑖𝑖𝑖�𝑅𝑅𝑗𝑗� is 

calculated using the three-day event window (0, +2) around the date of firm i’s patent 

announcement assuming the normal distribution of the value of the patent 𝑣𝑣𝑖𝑖𝑖𝑖. We deviate from 

Kogan et al. (2017) only by not truncating at zero, in order to allow negative reactions. Due to 

potential blockings and business stealing effects, it is less plausible that the value of a focal firm’s 

patent for competitors is a strictly positive random variable. 

To analyze the value externalities of California’s tax credit introduction, we calculate for each 

firm i’s patent portfolio, assembled in year t, the total value reaction by its closest competitor j, 

and use this as the dependent variable. Table 10 shows the corresponding results in column a. The 

average potentially masks significant heterogeneity though. If patents are mainly used to exploit 

extant technologies and to shield the focal firm from additional competition, then firms that are 

close in technology space should be more negatively affected. Positive spillovers on the other hand 

might be more likely to occur when the competing firm is in the same industry but further away in 

technology space, such that technological entrenchment of firm i is less likely to interfere with 

technological developments of firm j. We thus split the sample at the median of technological 

proximity. Table 10, column b shows the corresponding results for competitors above the median 
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of technological proximity and column c the corresponding results for competitors below or equal 

to the median of technological proximity. The results in Table 10 confirm that the negative 

association between tax credits and stock market valuation of competitors is indeed driven by firms 

with high technological proximity. 

Table 10 – Impact of the California tax credit of 1987 

on closest competitor’s stock market value 
 

Panel A: Original sample  
 a b c 

  Value reaction of 
closest competitor 

Value reaction of 
closest competitor 

> median Tech 
Proximity 

Value reaction of 
closest competitor 
<= median Tech 

Proximity 
R&D tax credit ratet-3 -2.405** -6.053* 3.530* 
  (1.114) (2.990) (1.731) 
N 7,539 3,699 3,766 
Year FE yes yes yes 
Firm FE yes yes yes 
R2 0.112 0.132 0.092 
Panel B: Matched sample  
 a b c 

  Value reaction of 
closest competitor 

Value reaction of 
closest competitor 

> median Tech 
Proximity 

Value reaction of 
closest competitor 
<= median Tech 

Proximity 
R&D tax credit ratet-3 -3.775*** -6.668*** 1.840 
  (1.196) (1.392) (1.879) 
N 4,351 2,146 2,159 
Year FE yes yes yes 
Firm FE yes yes yes 
R2 0.121 0.132 0.120 
Notes: All models are OLS regressions. R&D tax credit is the effective rate as calculated by 
Wilson (2009). Competing firms’ value reactions are windsorized at the 1% and 99% level to 
restrict the influence of outliers on the estimates. Heteroscedasticity-robust standard errors are 
clustered at the state level and shown in parentheses. ***, **, * indicate statistical significance 
at the 1%, 5%, 10% level, respectively. 

 

An increase in blocking and strategic patents 

Here we investigate mechanisms that may have contributed to the increase in firm valuation, 

for firms that were able to take the tax credit. Akcigit, Baslandze, and Lotti (2018) illustrate how 

political lobbying can stifle innovation; here we illustrate a consistent but different mechanism 

through strategic patenting and the blocking of competitor’s future innovation streams. We 

modeled the number of future inventions that are “blocked” by treated firms’ patents (for a detailed 

exposition of the data and measure, please see Lueck et al., 2020). The idea is loosely opposite 
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that of a prior art citation – rather than indicating a positive knowledge spillover, a blocking 

citation prevents a future patent from issuing, because the prior and blocking patent invalidates the 

novelty claim of the future patent. We also modeled patents which are economically valuable but 

do not appear to generate knowledge spillovers. 

We define a blocked patent as a denied EPO patent application that refers to a given US patent 

as a X or Y-type of prior art (X applies when a single document invalidates the novelty of the 

application, Y applies when a combination of documents invalidates the application). Further, we 

define a strategic patent as falling into the top 50% of the stock market value reaction in a given 

year but receiving no future prior art citations (thus indicating financial value to the firm, but low 

knowledge spillovers, at least by the conventional measure of future prior art citations; see Jaffe, 

Trajtenberg, and Henderson, 1993; Kurakina, 2021). Tax credits appear to discourage subsequent 

innovation. Table 11, column a illustrates a positive and significant correlation between tax credits 

and future blockings. Table 11, column b shows that tax credits are also associated with a higher 

number of strategic patents. Analogous to the increase in markups as a measure of market power 

in product markets, these results can be interpreted as a measure of increased market power in 

technology markets. 

 

A decrease in new market entry 

Consistent with an increased focus on known technological areas, firms which were able to take 

advantage of tax credits were also less likely to subsequently enter new markets. Hall (1993) raised 

the possibility that tax credits could unintentionally lead to a favoring of new product development 

over fundamental research; ironically, this appears not to have happened, and that refinement in 

both technologies and markets occurred instead. The lack of new market entry is also consistent 

with a shift away from “external innovation” (Ackigit and Kerr, 2018). 

To establish this empirically, we use the Compustat Historical Segment files, which measure 

each firm’s sales generated across industries at the SIC 3-digit level. Based on these data we 

calculated the amount of sales generated in industries, where the same firm had not generated any 

sales beforehand, and the number of industries entered, measured as the number of distinct 

industries, where the focal firm had not generated any sales beforehand. We use information in 

t+3, i.e., six years after tax credit introduction, to allow for a sufficient time lag between 

investment into new product development, patenting of new technologies, and the actual 
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introduction of new products to the market. Table 12 illustrates how R&D tax credits do not appear 

to encourage firms to enter new markets, as indicated by the number of new industries entered and 

sales generated in those industries. 

 

 

Table 11 – The impact of R&D tax credits on blockings and strategic patents 

Panel A: Original sample 
 a b 

  Blocked EPO 
Patents Strategic Patents 

R&D tax credit ratet-3 3.406*** 0.541*** 
  (0.331) (0.108) 
N 19,942 22,257 
Year FE yes yes 
Firm FE yes yes 
R2 0.750 0.793 
Panel B: Matched sample 
 a b 

  Blocked EPO 
Patents Strategic Patents 

R&D tax credit ratet-3 2.798*** 0.444*** 
  (0.382) (0.150) 
N 11,445 12,590 
Year FE yes yes 
Firm FE yes yes 
R2 0.685 0.819 

Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. Blocked EPO 
Patents is the total number of blocked patent applications at the European Patent Office (EPO), defined as patent 
applications that were eventually denied by the EPO and referred to at least one US patent of the focal firm applied 
in year t, which was classified as potentially blocking (X or Y citations in the EPO examiner search report). Strategic 
Patents is the total number of patents that fall into the top 50% of the stock market value reactions in a given year but 
not into the top 50% of future citations. Heteroscedasticity-robust standard errors are clustered at the state level and 
shown in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, respectively. 
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Table 12 – The impact of R&D tax credits on sales in new to the firm markets 

Panel A: Original sample 
 a b 

  
Sales in new to 

the firm 
industries in t+3 

New industries 
entered in t+3 

R&D tax credit ratet-3 -0.789* -0.143** 
  (0.439) (0.063) 
N 20,215 20,215 
Year FE yes yes 
Firm FE yes yes 
R2 0.148 0.134 
Panel B: Matched sample 
 a b 

  
Sales in new to 

the firm 
industries in t+3 

New industries 
entered in t+3 

R&D tax credit ratet-3 -1.118** -0.212*** 
  (0.527) (0.073) 
N 11,343 11,343 
Year FE yes yes 
Firm FE yes yes 
R2 0.149 0.142 
Notes: All dependent variables are measured in logarithmic form. All 
models are OLS regressions. Sales New to the Firm are sales generated 
in SIC 3-digit industries where the given firm has never generated sales 
beforehand in that industry, measured in t+3. New Industries Entered is 
the total number of SIC 3-digit industries where the given firm has never 
generated sales beforehand in that industry, measured in t+3. 
Heteroscedasticity-robust standard errors are clustered at the state level 
and shown in parentheses. ***, **, * indicate statistical significance at 
the 1%, 5%, 10% level, respectively. 

 

Consistent results in tax credit changes by other states, following California’s change 

Over the last decades, many states have followed California by introducing their own R&D tax 

credit schemes with varying effective rates. Despite the methodological problems discussed above, 

we re-estimated all models, including all states that introduced R&D tax credits over the period of 

1977 to 2006. The results are shown in the Appendix A, Table A2. In the full sample we still find 

large private returns as measured by increased patenting and private value creation. The increased 

focus on known technologies, increased blockings and markups remain, though marginal effects 

are often lower.18F

19 

                                                 
19 The reasons for the differences in effects are not easy to disentangle. Time seems to play a role as we find lower 
effects in terms of significance and economic magnitude the more we move to the later years of the sample, which 
can be explained by a lower relative advantage of havening R&D tax credits when many technology intensive firms 
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The effects of a different R&D cost shock 

 The previous results raise the question to which extent the effects are specific to R&D tax credit 

or are also a feature of different innovation cost shocks. For instance, if marginal innovation 

projects are more likely to be characterized by exploitative innovation activities, we should see 

similar patterns for other exogenous events that induce patenting. For this purpose, we relate our 

main outcome variables to an innovation cost shock proposed by Aghion et al. (2019) which is 

based on time-varying state composition of Appropriation Committees. The idea is that legislators 

on Appropriation Committees often push for the approval of grants on R&D projects from the state 

which they represent. Following Aghion et al. (2019), we construct a variable which measures the 

number of senators on the Appropriation Committee for each state and year.19F

20  

Results in Table 13 show that this variable is positively and statistically insignificantly related 

to patents. An additional senator which represents a state is associated with a 4% increase in the 

expected number of patents per firm. However, it does not seem to affect the exploitation ratio nor 

markups significantly. These results are consistent with the hypothesis that our findings are a 

unique feature of R&D tax credits but not of other innovation policies.  

 

Table 13 – The impact of state R&D committee members 

Panel A: Original sample  
 a b C 
  Patents Exploitation ratio Markups 

R&D committeet-3 0.040** 0.016 -0.003 
  (0.019) (0.020) (0.008) 
N 70489 70489 67465 
Year FE yes yes yes 
Firm FE yes yes yes 
R2 0.760 0.539 0.662 

 

 

5. Discussion 

Hall (1993), Hall and Van Reenen (2000), and Hall (2019) emphasize that when firms face 

lower costs of R&D they will maximize their private returns rather than the social benefits to their 

innovative efforts. Our evidence confirms this expectation. It further highlights that R&D tax 

                                                 
were already situated in states that had tax credits in place. Another explanation, as we discuss above, is measurement 
error due to interaction with other reforms which would bias our results in the full sample towards zero. 
20 See Aghion et al. (2019) for a detailed discussion of the institutional background and the exogeneity of this measure. 
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credits can encourage strategic use of the patent system. Increased blockings and increased 

markups point to possibly unintended consequences of R&D tax credit provision. The introduction 

of R&D tax credits in 28 U.S. states over the 1980s and 1990s may have contributed to the large 

increase of markups over the same period (De Loecker, Eeckhout and Unger, 2020). This finding 

points out that revenue-based productivity gains due to R&D subsidies found earlier (Einiö, 2014) 

might have been partially driven by increased market power, rather than innovation that enables 

new products or increased efficiency of the production process. 

 Negative externalities of tax credits, for example, blocking, strategic patenting, and negative 

impacts on competitors have been largely neglected in the broader literature on the impact of 

different kinds of R&D subsidies (see for example: Howell, 2017; Bøler, Moxnes and Ulltveit-

Moe, 2015; Moretti, Steinwender and Van Reenen, 2016; Jaffe and Le, 2015; Azoulay et al., 2014; 

Lach, 2002; Branstetter and Sakakibara, 2002). This might have occurred due to missing data or 

because the classic theory (Arrow, 1962) did not consider the interplay between the unconditional 

provision of R&D subsidies and the patent system.20F

21  

This finding of negative externalities could warrant a reconsideration of Arrow’s original 

theory. It is usually argued that firms underinvest in R&D because they are afraid of knowledge 

leakage to competitors, which reduces the appropriability of the returns to innovation. R&D tax 

credits appear – as intended – to ameliorate the problem of reduced R&D. Yet they appear to create 

both positive spillovers, for example, as measured by future prior art citations, as well as negative 

spillovers, for example, as measured by increased blocking patents. These results call for a 

reconsideration of the theory behind the combination of unconditional R&D tax credit provision 

with a patent system that intends to solve the same appropriability problem, as well as refinement 

of empirical estimations of positive and negative spillovers. 

Others who have explicitly incorporated costs or negative externalities of R&D subsidies in 

their analyses considered costs stemming from the time and effort spent on the application 

processes, the shadow costs of public funds (Takalo, Tanayama, Toivanen, 2013, 2014 and 2017), 

windfall gains (González, Jamandreu and Pazó, 2005), or negative externalities on entry 

(Acemoglu et al., 2018). These studies do not consider, however, the interplay of tax credits with 

the patent system, which allows firms to use tax credits for strategic purposes, potentially just to 

raise rivals’ costs (Salop and Scheffman, 1983; Shleifer and Vishny, 1989) or steal business from 

                                                 
21 That patents can inhibit competition has been shown for instance by Cockburn and MacGarvie (2011). 
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competitors (Bloom et al., 2013).21F

22 Neglecting this interplay between tax credits and the patent 

system leads to potential overestimations of social benefits, at least in industries where patents are 

effective in both solving the appropriability problem and blocking competitors’ research. 

Policy makers have understood that tax credits are most valuable for firms that generate taxable 

income, and thus may unintentionally favor larger and older firms with more stable profit streams. 

In 2016, the US made 10% of qualifying R&D expenses deductible against payroll taxes for firms 

with maximal $5 million in revenue. This should effectively reduce incentives to prioritize 

exploitation over exploration. Akcigit, Hanley, Serrano-Velarde (2020) make a similar argument 

when they propose more targeted research subsidies that would favor basic rather than applied 

research. Richer datasets will provide fruitful avenues for research on this topic. 

 

6. Conclusion 

We proposed that R&D tax credits induce a shift towards refinement and exploitation, because 

exploration (though potentially offering a bigger upside) remains risky and less likely to generate 

a profit. While succeeding in reducing R&D costs, classic R&D tax credits may unintentionally 

make experimenting and exploration more costly relative to exploitation, because exploration 

increases the likelihood that R&D costs can either not be expensed – or expensed only later at a 

discounted rate. Since credits become less valuable without profits (Hall, 2019), innovation shifts 

towards refinement of known technologies, particularly for firms that face greater uncertainty.  

We illustrated this empirically for California firms following a 1987 tax credit, most tellingly 

for firms with inventors residing both in and beyond California. Elaborating empirically on the 

strategic and industrial implications of this shift in search strategy, we also illustrated how firms 

generate large private returns as measured by stock market reactions (Kogan et al., 2017). This 

increase in private value comes mainly from an increased focus on the exploitation of the firm’s 

existing technological trajectories; most of the increase in valuable patents is concentrated in 

technological areas known to the firm. We also find increased blockings of patent applications at 

the European Patent Office (Lueck et al., 2020), caused by patents previously filed by California 

firms following the introduction of tax credits. Furthermore, we observe a decrease in valuation 

                                                 
22 If the patent system or intellectual property rights (IPR) are very effective, it can be shown that IPRs can be too 
strong from social planner’s view (Acemoglu and Akcigit, 2012), and R&D tax incentives will rarely be helpful in 
such cases (Acemoglu et al., 2013). 
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for firms that are close technological competitors to the treated firm. Firms appear less likely to 

enter new markets, instead, a substantial part of the value creation stems from an increase in 

strategic patenting, that is, we observe a higher number of patents which are associated with large 

stock market returns but receive relatively few future citations.  Results hold within firms (within 

and outside California), in a matched sample, and a broader sample which exploits the staggered 

introduction of R&D tax credits across states. 

Despite the popularity of Schumpeter’s idea that innovation causes creative destruction (1942), 

empirical work has more often focused on positive spillovers (usually future prior art citations, see 

Bloom et. al., 2013, for a discussion); here we use novel measures of “blocking patents,” as well 

as the combination of competitive distance and the financial impact of competitors’ patents, to 

investigate the negative externalities of innovation induced by tax credits. Many papers have 

evaluated credits with conventional measures such as spending, patents, and citations, however, 

there is a richer picture to be drawn of Schumpeter’s idea of negative side effects. 

Following Lerner and Seru (2017), this work sought to understand the impact and mechanisms 

of one tax credit in detail (Hall and Wosinska, 1999), before broadening the analysis and 

considering a number of later tax credit changes. We found that the benefits of tax credits for other 

states were qualitatively similar to California, although the effects were quantitatively smaller. It 

appears that California firms exploited a huge benefit in getting ahead of their out-of-state 

competitors. The 1987 tax credit may have played an under-appreciated role in Silicon Valley’s 

rise to technological dominance. Surprisingly, that advantage came mainly from the exploitation 

of firms’ prior trajectories, rather than from fundamentally new breakthroughs. If that is correct, 

then Silicon Valley’s historical advantage becomes easier to understand – and more difficult to 

replicate, now that many regions have enacted tax credits.  
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Appendices 
 
Part A 
 

 

 

Table A1 – R&D tax credit introductions 1978 to 2006 

State Year of Introduction Nominal Rate Effective Rate 
Minnesota 1982 2.50% 2.50% 
Indiana 1985 5.00% 5.00% 
Iowa 1985 6.50% 6.50% 
West Virginia 1986 10.00% 10.00% 
Wisconsin 1986 5.00% 4.60% 
California 1987 15.00% 13.70% 
Kansas 1988 6.50% 0.40% 
North Dakota 1988 4.00% 4.00% 
Oregon 1989 5.00% 5.00% 
Illinois 1990 6.50% 0.50% 
Massachusetts 1991 10.00% 10.00% 
Connecticut 1993 6.00% 6.00% 
Arizona 1994 11.00% 11.00% 
Missouri 1994 6.50% 0.50% 
New Jersey 1994 10.00% 10.00% 
Rhode Island 1994 16.90% 16.90% 
Maine 1996 5.00% 0.40% 
North Carolina 1996 5.00% 5.00% 
Pennsylvania 1997 10.00% 0.90% 
Georgia 1998 10.00% 10.00% 
Montana 1999 5.00% 5.00% 
Utah 1999 6.00% 6.00% 
Delaware 2000 10.00% 0.90% 
Hawaii 2000 20.00% 20.00% 
Maryland 2000 10.00% 0.90% 
Idaho 2001 5.00% 5.00% 
South Carolina 2001 5.00% 5.00% 
Texas 2001 5.00% 5.00% 
Louisiana 2003 8.00% 8.00% 
Vermont 2003 10.00% 0.90% 
Ohio 2004 7.00% 0.50% 
Nebraska 2006 3.00% 0.20% 
 Source: Wilson (2009), tax rates reflect the most recent rate. 
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Table A2 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (full sample patenting firms) 

 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

R&D tax credit ratet-3 3.098*** 1.855** 0.344* 2.409** 2.065** 
 (0.902) (0.877) (0.177) (1.106) (0.981) 

N 71,646 71,646 71,646 71,646 71,646 
Firm FE yes Yes yes yes yes 
Year FE yes Yes yes yes yes 
R2 0.877 0.761 0.534 0.791 0.559 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. 
Heteroscedasticity-robust standard errors are clustered at the state level and shown in parentheses. ***, **, * 
indicate statistical significance at the 1%, 5%, 10% level, respectively. 

 

 

Table A3 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (tax credits measured in t-2, t-4) 

 
 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

Effective tax rate in t-2     
R&D tax credit ratet-2 5.280*** 4.131*** 1.431*** 4.744*** 3.313*** 

 (0.535) (0.340) (0.208) (0.370) (0.278) 
N 22,257 22,257 22,257 22,257 22,257 
Firm FE yes Yes yes yes yes 
Year FE yes Yes yes yes yes 
R2 0.892 0.809 0.604 0.839 0.607 
Effective tax rate in t-4     
R&D tax credit ratet-4 5.524*** 4.777*** 1.624*** 5.496*** 3.872*** 
 (0.501) (0.345) (0.209) (0.345) (0.264) 
N 22,257 22,257 22,257 22,257 22,257 
Firm FE yes Yes yes yes yes 
Year FE yes Yes yes yes yes 
R2 0.892 0.809 0.604 0.839 0.607 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. The table 
shows estimations of the models introduced above for the California experiment but with nominal R&D tax 
credit rate instead of the effective R&D effective credit. Heteroscedasticity-robust standard errors are clustered 
at the state level and shown in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, 
respectively. 
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Table A4 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (California sample, nominal tax credit rate) 

 
 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

R&D tax credit ratet-3 4.395*** 2.972*** 0.826*** 3.697*** 2.871*** 
 (0.475) (0.258) (0.159) (0.289) (0.213) 

N 22,257 22,257 22,257 22,257 22,257 
Firm FE yes yes yes yes yes 
Year FE yes yes yes yes yes 
R2 0.892 0.808 0.604 0.838 0.607 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. The tabke 
shows estimations of the models introduced above for the California experiment but with nominal R&D tax 
credit rate instead of the effective R&D effective credit. Heteroscedasticity-robust standard errors are clustered 
at the state level and shown in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, 
respectively. 

 

 

Table A5 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (California sample, R&D user costs) 

 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

R&D user costst-3 -4.862*** -3.500*** -1.335*** -4.066*** -2.730*** 
 (0.874) (0.590) (0.155) (0.723) (0.709) 

N 22,257 22,257 22,257 22,257 22,257 
Firm FE yes yes yes yes yes 
Year FE yes yes yes yes yes 
R2 0.892 0.809 0.604 0.838 0.607 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. The table 
shows estimations of the models introduced above for the California experiment but with R&D user costs 
instead of the effective R&D effective credit as defined in Wilson (2009) and often previously used in the 
literature instead of the effective R&D effective credit. Note that R&D tax credits lowered the costs of R&D 
such that a negative sign implies a positive effect of R&D tax credit introductions and vice versa. 
Heteroscedasticity-robust standard errors are clustered at the state level and shown in parentheses. ***, **, * 
indicate statistical significance at the 1%, 5%, 10% level, respectively. 
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Table A6 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (California sample, effective rate, excluding IT sector: SIC codes 357 

‘Computer and Office Equipment’, 366 ‘Communications Equipment’, and 367 ‘Electronic 
Components’) 

 
 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

R&D tax credit ratet-3 4.284*** 3.091*** 0.730*** 3.630*** 2.900*** 
 (0.656) (0.449) (0.259) (0.486) (0.346) 

N 19,070 19,070 19,070 19,070 19,070 
Firm FE yes yes yes yes yes 
Year FE yes yes yes yes yes 
R2 0.895 0.824 0.617 0.859 0.628 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. 
Heteroscedasticity-robust standard errors are clustered at the state level and shown in parentheses. ***, **, * 
indicate statistical significance at the 1%, 5%, 10% level, respectively. 

 

 

Table A7 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (California sample, classic Diff-in-Diff, dummy instead of tax credit rate for 

being treated) 
 

 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

Dummy (R&D tax 
credit rate > 0) t-3 

0.352*** 0.238*** 0.066*** 0.296*** 0.230*** 

 (0.038) (0.021) (0.013) (0.023) (0.017) 
N 22,257 22,257 22,257 22,257 22,257 
Firm FE yes yes yes yes yes 
Year FE yes yes yes yes yes 
R2 0.892 0.808 0.604 0.838 0.607 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. 
Heteroscedasticity-robust standard errors are clustered at the state level and shown in parentheses. ***, **, * 
indicate statistical significance at the 1%, 5%, 10% level, respectively. 
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Table A8 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (California sample, IV approach, using R&D user costs as the instrument for 

R&D expenses) 
 

  a b c d 

   Patents New tech Known tech Exploitation 
ratio 

Log (R&D), est.  0.720*** 0.275*** 0.836*** 0.562*** 
  (0.086) (0.054) (0.088) (0.087) 

N  22,257 22,257 22,257 22,257 
First stage F  30.94 30.94 30.94 30.94 
Firm FE  Yes yes yes yes 
Year FE  Yes yes yes yes 
Notes: All dependent variables are measured in logarithmic form. All models are IV regressions where 
log(R&D) is instrumented with the R&D user costs in t-3. F values are Kleibergen-Paap Wald F statistics of 
the first stage. Heteroscedasticity-robust standard errors are clustered at the state level and shown in 
parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, respectively. 

 

 
 

Table A9 – The impact of R&D tax credits on R&D, patents, and exploitation vs. 
exploration (California sample, effective rate, adding controls) 

 
 a b c d e 

  R&D Patents New tech Known tech Exploitation 
ratio 

Log(age) 0.096 0.269*** 0.128*** 0.214*** 0.086** 
 (0.099) (0.058) (0.035) (0.064) (0.036) 

Capital exp/assets 0.237*** 0.201** 0.198*** 0.084 -0.114 
 (0.076) (0.078) (0.056) (0.083) (0.073) 

ROA 0.008 0.019*** 0.008*** 0.012* 0.004 
 (0.008) (0.005) (0.002) (0.006) (0.006) 

Leverage -0.009 -0.004 -0.002 -0.004 -0.002 
 (0.006) (0.006) (0.004) (0.004) (0.003) 

R&D tax credit ratet-3 5.146*** 4.081*** 1.342*** 4.775*** 3.433*** 
 (0.469) (0.316) (0.208) (0.316) (0.273) 

N 21,897 21,897 21,897 21,897 21,897 
Firm FE yes yes yes yes yes 
Year FE yes yes yes yes yes 
R2 0.895 0.813 0.608 0.842 0.610 
Notes: All dependent variables are measured in logarithmic form. All models are OLS regressions. 
Heteroscedasticity-robust standard errors are clustered at the state level and shown in parentheses. ***, **, * 
indicate statistical significance at the 1%, 5%, 10% level, respectively. 
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A10 – Original vs. matched sample  
 
The following Table A10 shows the difference in firms’ key characteristics, age, total asset and 

R&D intensity as measured by R&D expenses over total assets for the matched sample before 

and after CEM matching as explained in the text. 

 

Table A10 - Results of t-tests on mean differences in variables between California 
firms and control group firms, original vs. matched sample 
 
 Original sample Matched sample 

Variable 

t-values  for H0: 
mean(California)-
mean(control)=0  

t-values  for H0: 
mean(California)-
mean(control)=0  

R&D intensity Ø (1986+1987) -2.918*** -0.062 
   
log(age) Ø (1986+1987) 4.463*** 0.036 
   
log(total assets) Ø (1986+1987) 4.286*** -0.177 
Notes: This table shows the differences in firms’ key characteristics, age, total asset and R&D intensity as measured 
by R&D expenses over total assets in mean values of 1986 and 1987 before and after CEM matching as explained 
in the main body of the text. N = 810. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, 
respectively. 
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A11 – Alternative measures of innovative search 
 

In order to distinguish firms in any given year based on their relative focus on exploitation of 

existing known technologies versus exploration of newer technologies (otherwise referred to as a 

firm’s level of exploitation search focus), we use four alternative empirical measures that draw on 

three distinct sources of information. 

Our first measure is the ratio of patents to scientific papers, that is, the number of patents that 

a company receives, relative to the number of science papers it publishes (Arora, Belonzon and 

Sheer, 2020). Second, we measure the reliance of patenting on basic research by the fraction of 

citations to the scientific (non-patent) literature made by the firm’s patents (patents cite other 

patents, and they also cite non-patent literature, and the latter is typically science publications, see 

Fleming and Sorenson, 2004). Our third measure is the increased reliance on firms’ own 

technologies as measured by increased fraction of self-citations, i.e., cites to firms’ own previously 

filed patents out of all cites to prior art. Fourth, we use the Internal Search Proximity score of 

Fitzgerald et al. (2020), which examines the degree of overlap between patents granted to the firm 

in year 𝑡𝑡 and the existing patent portfolio held by the same firm up to year 𝑡𝑡 − 1. It is a variant of 

the Jaffe (1989) technological proximity measure to estimate the “closeness” in technological 

space of firm 𝑖𝑖’s new patents in year 𝑡𝑡 (patent flow 𝑓𝑓) and its pre-existing patent stock 𝑔𝑔 at year 

𝑡𝑡 − 1 using patent counts in different USPTO three-digit technology classes 𝑘𝑘: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑡𝑡 = ∑ 𝑓𝑓𝑖𝑖,𝑘𝑘,𝑡𝑡𝑔𝑔𝑖𝑖,𝑘𝑘,𝑡𝑡−1
𝐾𝐾
𝑘𝑘=1
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    (1) 

where 𝑓𝑓𝑖𝑖,𝑘𝑘,𝑡𝑡 is the fraction of patents applied by firm 𝑖𝑖 in year 𝑡𝑡 that are in technology class 𝑘𝑘 such 

that the vector 𝑓𝑓𝑖𝑖,𝑡𝑡 = �𝑓𝑓𝑖𝑖,1,𝑡𝑡 … 𝑓𝑓𝑖𝑖,𝐾𝐾,𝑡𝑡� locates the firm’s year 𝑡𝑡 patenting activity in 𝐾𝐾-dimensional 

technology space and 𝑔𝑔𝑖𝑖,𝑘𝑘,𝑡𝑡−1 is the fraction of all patents applied for by firm 𝑖𝑖 up to (and including) 

year 𝑡𝑡 − 1 that are in technology class 𝑘𝑘 such that vector 𝑔𝑔𝑖𝑖,𝑡𝑡−1 = �𝑔𝑔𝑖𝑖,1,𝑡𝑡−1 …𝑔𝑔𝑖𝑖,𝐾𝐾,𝑡𝑡−1� locates the 

firm’s patent stock in 𝐾𝐾-dimensional technology space.22F

23 Internal Search Proximity will be zero 

for a given firm year when there is no overlap in a firm’s innovative output in year 𝑡𝑡 with the firm’s 

patent stock at time 𝑡𝑡 − 1, while Internal Search Proximity will equal one when the technology 

class distribution of firm 𝑖𝑖’s patents granted this year is identical to that of patents accumulated in 

                                                 
23 When computing Internal Search Proximity measures for each firm, we only use patents initially granted to the firm 
itself (since these patents are internally generated based on the firm’s R&D activities). In robustness tests, we also 
include patents acquired by the firm in our calculations and find qualitatively similar results. 
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previous years. Therefore, firms are classified as being relatively more focused on             

exploitation /(exploration) when they have high/(low) value of Internal Search Proximity. 

 

 

Table A11 – The impact of R&D tax credits on patents per scientific article, fraction of 
cites to the scientific literature, fraction of self-citations, and search proximity 

 a b c d 

  
Patents per 
scientific 

article 

Fraction 
cites to 

scientific 
literature 

Fraction 
self-

citations 

Internal 
Search 

Proximity 

R&D tax credit ratet-3 1.832*** -0.187*** 0.086** 1.176*** 
  (0.414) (0.023) (0.038) (0.159) 
N 10233 9,376 9,376 7,049 
Year FE yes yes yes yes 
Firm FE yes yes yes yes 
R2 0.652 0.580 0.385 0.498 
Notes: All dependent variables are measured in logarithmic form. All models are OLS 
regressions. Heteroscedasticity-robust standard errors are clustered at the state level and shown 
in parentheses. ***, **, * indicate statistical significance at the 1%, 5%, 10% level, respectively. 

 
Table A12 – Count data models 

Panel A: Original Sample      
 a b c d e f 
 Patents New tech Known tech Patents New tech Known tech 
R&D tax credit ratet-3 12.935***   14.683*** 4.668*** 13.205*** 14.847*** 4.261*** 
 (1.619) (1.682) (0.658) (3.722) (4.027) (1.526) 
N 22257 22257 22257 20640 13442 20585 
Firm FE no no no yes yes yes 
State FE yes yes yes no no no 
Year FE yes yes yes yes yes yes 
Panel B: Matched Sample 
  a b c d e f 
 Patents New tech Known tech Patents New tech Known tech 
R&D tax credit ratet-3 11.630*** 13.289*** 3.506*** 11.761*** 13.336*** 2.948 
 (1.927) (2.100)  (1.080) (3.494) (3.866) (1.853) 
N 12590 12590 12590 11850 7924 11828 
Firm FE no no no yes yes yes 
State FE yes yes yes no no no 
Year FE yes yes yes yes yes yes 

Notes: All models are Poisson regressions. Heteroscedasticity-robust standard errors are 
clustered at the state level and shown in parentheses. ***, **, * indicate statistical significance 
at the 1%, 5%, 10% level, respectively. 
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Part B: Robustness checks for markups 

 

Table B1 – Alternative markup estimates 

  a b c d e f 

 
Time-
varying 
coefficients 

Translog 
production 
function 

Controlling 
for SGA 

Controlling 
for market 

share 
Forlani et al. 

Controlling 
for TFP, 

TFP2, TFP3 
R&D tax credit ratet-3 0.546*** 0.745*** 0.341*** 0.425** 0.507* 0.207** 
 (0.082) (0.087) (0.123) (0.180) (0.261) (0.100) 
N 21759 21733 19523 21833 19438 21759 
Firm FE yes yes yes yes yes yes 
Year FE yes yes yes yes yes yes 
Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, estimated following De Loecker, 
Eckhout and Unger (2020). R&D tax credit is the effective rate as calculated by Wilson (2009). OLS regressions, 
heteroscedasticity-robust standard errors are clustered at the state level. ***, **, * indicate statistical significance at the 1%, 5%, 
10% level, respectively. 

 
 
 

Table B2 – Industry-level measure of uncertainty 

 a b c d 
 Original sample matched sample 

 Subsample: High 
uncertainty 

Low 
uncertainty 

High 
uncertainty 

Low 
uncertainty 

R&D tax credit ratet-3 0.802*** 0.129    0.653** 0.159 
  (0.184) (0.094) (0.311) (0.156) 
     
N 10825 10934 6842 5395 
Firm FE yes yes yes yes 
Year FE yes yes yes yes 
R2 0.008 0.011 0.039 0.030 

Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, estimated following De 
Loecker, Eckhout and Unger (2020). R&D tax credit is the effective rate as calculated by Wilson (2009). High 
uncertainty (low uncertainty) subsample consists of firms whose standard deviation of profits relative to the absolute 
level of average profits areabove the median, based on observations before 1987. OLS regressions, heteroscedasticity-
robust standard errors are clustered at the state level. ***, **, * indicate statistical significance at the 1%, 5%, 10% 
level, respectively. 
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Table B3 – Markups and alternative measures of tax credit exposure 

  a b c d 
     
R&D tax credit ratet-2 0.633***    
 (0.100)    
R&D tax credit ratet-4  0.624***   
  (0.100)   
R&D tax nominal 
rate t-3   0.508***    

   (0.086)    
R&D user cost t-3 
    -0.565*** 
 
    (0.083) 

N 21759 21759 21759 21759 
Firm FE yes yes yes yes 
Year FE yes yes yes yes 

Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, 
estimated following De Loecker, Eckhout and Unger (2020). R&D tax credit is the effective 
rate as calculated by Wilson (2009). OLS regressions, heteroscedasticity-robust standard errors 
are clustered at the state level. ***, **, * indicate statistical significance at the 1%, 5%, 10% 
level, respectively. 

 

 

 

Table B4 – Markups and tax credits in the full sample 

  a b c d e 

Sample 
All states 
and years, 
all firms  

Firms that 
patent 

Firms that 
do not 
patent 

Firms that 
engage in 

R&D 

Firms that 
do not 

engage in 
R&D 

R&D tax credit ratet-3 0.334** 0.700*** 0.098 0.619*** 0.143 
 (0.156) (0.255) (0.107) (0.215) (0.122) 
N 203531 70294 133237 89518 114013 
Firm FE yes yes yes yes yes 
Year FE yes yes yes yes yes 
Notes: The dependent variable is the markup, defined as the ratio of price to marginal costs, estimated following 
De Loecker, Eckhout and Unger (2020). R&D tax credit is the effective rate as calculated by Wilson (2009). 
OLS regressions, heteroscedasticity-robust standard errors are clustered at the state level. ***, **, * indicate 
statistical significance at the 1%, 5%, 10% level, respectively. 
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Part C: Theoretical Model 

We assume a two-period model (t = 2) (Manso (2011) shows that the fundamental logic and 

results hold for longer periods and team production). In each period, a firm decides to invest in a 

research strategy 𝑟𝑟 ∈ [0,1]. The research strategy, 𝑟𝑟, reflects the firm’s balance between investing 

into a well-known research strategy (exploitation, T) and investing in a novel research strategy 

(exploration, R). 𝑟𝑟 = 0 is equivalent to fully investing into a well-known research strategy 

(exploitation, T), with known probability 𝑝𝑝 of success (𝑆𝑆𝑇𝑇) and (1 − 𝑝𝑝) of failure (𝐹𝐹𝑇𝑇), with 𝑆𝑆𝑇𝑇 >

𝐹𝐹𝑇𝑇. 𝑟𝑟 = 1 is equivalent to investing in a novel research strategy (exploration, R) with an unknown 

probability 𝑞𝑞 of success (𝑆𝑆𝑅𝑅) and (1 − 𝑞𝑞) of failure (𝐹𝐹𝑅𝑅), such that 𝑆𝑆𝑅𝑅 > 𝑆𝑆𝑇𝑇 > 𝐹𝐹𝑇𝑇 > 𝐹𝐹𝑅𝑅 (all 

outcomes are expressed as after-tax). For any choice of research strategy, 𝑟𝑟, the four possible 

outcomes occur with probabilities: (1 − r)𝑝𝑝 of 𝑆𝑆𝑇𝑇, (1 − 𝑟𝑟)(1− 𝑝𝑝) of 𝐹𝐹𝑇𝑇, 𝑟𝑟𝑟𝑟 of 𝑆𝑆𝑅𝑅, and  𝑟𝑟(1 − 𝑞𝑞) 

of 𝐹𝐹𝑅𝑅.  

Additionally, in this model we assume that exploration generates not only higher return in case 

of success than exploitation, but at the same time has a higher volatility of returns, represented by 

the outcome in case of an exploration failure that is lower than in case of an exploitation failure.  

Learning about 𝑞𝑞 increases as the research strategy is balanced towards exploring (r increases). 

The expected probability of success when exploring is 𝐸𝐸[𝑞𝑞] in the first period and in the second 

period after realizing 𝑆𝑆𝑇𝑇 or 𝐹𝐹𝑇𝑇.  𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] after experiencing a 𝑆𝑆𝑅𝑅, and 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] after experiencing a 

𝐹𝐹𝑅𝑅. From Bayes’ rule follows: 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] < 𝐸𝐸[𝑞𝑞] < 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅]. 

Exploration requires that the firm experiments. Hence, it is initially not as likely to succeed 

when it explores. Exploration might still be perceived as more beneficial than exploitation, because 

after the first period the firm updates its beliefs about the probability 𝑞𝑞 of success with exploration, 

meaning that if the firm succeeds in finding something interesting in the first period, exploration 

is then perceived as better than exploitation. This is captured as follows: 

𝐸𝐸[𝑞𝑞] < 𝑝𝑝 < 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] 

Additionally, we assume the following relationship is true: 

𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞]) < 𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝) 

A fully specified strategy for the firm is a decision in the first period 𝑟𝑟, and a set of contingent 

strategies that depend on the information set the firm has in the second period (𝑟𝑟2).  

In the second period, the firm decides conditional on their beliefs. 

With belief 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] the firm’s payoff in period 2 is equal to:  
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𝜋𝜋2,𝑆𝑆𝑅𝑅 = (𝑟𝑟2(𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])) + (1 − 𝑟𝑟2)[𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)] 

𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
𝜕𝜕𝑟𝑟2

= 𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅]) − (𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)) 

𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
𝜕𝜕𝑟𝑟2

> 0, and thus having learned that exploration is more valuable, the firm optimally chooses 

to explore (𝑟𝑟2 = 1). 

With belief 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] the firm’s payoff in period 2 is equal to: 

𝜋𝜋2,𝐹𝐹𝑅𝑅 = (𝑟𝑟2(𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅])) + (1 − 𝑟𝑟2)[𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)] 

𝜕𝜕𝜋𝜋2,𝐹𝐹𝑅𝑅
𝜕𝜕𝑟𝑟2

= 𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅]) − (𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)) 

𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
𝜕𝜕𝑟𝑟2

< 0, hence using a similar logic, having learned that exploration is not valuable, the firm 

optimally exploits (𝑟𝑟2 = 0) 

And lastly, with belief 𝐸𝐸[𝑞𝑞], the payoff is equal to: 

𝜋𝜋2 = (𝑟𝑟2(𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞])) + (1 − 𝑟𝑟2)[𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)] 
𝜕𝜕𝜋𝜋2
𝜕𝜕𝑟𝑟2

= 𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞]) − (𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)) 

Absent learning motives, the firm optimally exploits: 𝜕𝜕𝜋𝜋2
𝜕𝜕𝑟𝑟2

< 0 (𝑟𝑟2 = 0).  

Following Manso (2011), we assume risk-neutrality and a discount factor of δ. The first relevant 

action plan requires exploitation in both periods, as there is no chance to learn about something 

new if a firm sticks to its own knitting. The other relevant action plan, exploration, is to experiment 

in the first period and continue exploring only if success occurs, as we have just illustrated above. 

The firm’s total payoff is thus the following (𝑟𝑟1 = 𝑟𝑟): 

𝜋𝜋 = 𝑆𝑆𝑇𝑇(1 − 𝑟𝑟)𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑟𝑟)(1− 𝑝𝑝) + 𝑆𝑆𝑅𝑅𝑟𝑟𝑟𝑟[𝑞𝑞] + 𝐹𝐹𝑅𝑅𝑟𝑟(1 − 𝐸𝐸[𝑞𝑞])

+ 𝛿𝛿(𝑟𝑟𝑟𝑟[𝑞𝑞](𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])) + 𝑟𝑟(1 − 𝐸𝐸[𝑞𝑞])�𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)�

+ [𝑆𝑆𝑇𝑇(1 − 𝑟𝑟)𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑟𝑟)(1− 𝑝𝑝)]) 

Maximizing the payoff with respect to 𝑟𝑟: 

𝜕𝜕𝜋𝜋
𝜕𝜕𝜕𝜕

= −𝑆𝑆𝑇𝑇𝑝𝑝 − (1 − 𝑝𝑝)𝐹𝐹𝑇𝑇 + 𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞])

+ 𝛿𝛿[𝐸𝐸[𝑞𝑞](([𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅]𝑆𝑆𝑅𝑅 + (1 −  𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])𝐹𝐹𝑅𝑅) − (𝑝𝑝𝑆𝑆𝑇𝑇 + (1 − 𝑝𝑝)𝐹𝐹𝑇𝑇))] 

It follows that the total payoff from exploration is higher than the total payoff from exploitation 

�𝜕𝜕𝜋𝜋
𝜕𝜕𝜕𝜕

> 0� if: 
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𝐸𝐸[𝑞𝑞] ≥
𝑝𝑝(𝑆𝑆𝑇𝑇 − 𝐹𝐹𝑇𝑇) + (𝐹𝐹𝑇𝑇 − 𝐹𝐹𝑅𝑅)

(𝑆𝑆𝑅𝑅 − 𝐹𝐹𝑅𝑅)(1 + 𝛿𝛿𝛿𝛿[𝑞𝑞|𝑆𝑆𝑅𝑅]) − 𝛿𝛿[𝑝𝑝(𝑆𝑆𝑇𝑇 − 𝐹𝐹𝑇𝑇) + (𝐹𝐹𝑇𝑇 − 𝐹𝐹𝑅𝑅)]
 

 

Adding R&D tax credits 

We now introduce R&D tax credits into the model. Assume that the firm’s R&D expenditures 

are fixed and equal to RD, where 𝑆𝑆𝑅𝑅 > 𝑆𝑆𝑇𝑇 > 𝐹𝐹𝑇𝑇 > 𝑅𝑅𝑅𝑅 > 𝐹𝐹𝑅𝑅, meaning that in case of failure during 

exploration the firm makes no profit. 

Tax credits allow firms to deduct a fraction of their R&D expenses from their taxable income.  

Following the discussion in section 3, R&D tax credit can only be used in the firm’s profit after 

accounting for R&D expenditures is larger or equal than R&D. Let the tax credit rate be denoted 

as 𝑐𝑐, thus the received tax credit will be 𝑐𝑐𝑐𝑐𝑐𝑐 unless the firm fails in case during exploration (payoff  

𝐹𝐹𝑅𝑅), in which case the R&D tax credit is equal to 𝑐𝑐𝑐𝑐𝑅𝑅 .    

In the second period, the firm decides conditional on their beliefs (we assume that the decisions 

are the same as in the absence of R&D tax credit): 

With belief 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] the payoff is:  

𝜋𝜋2,𝑆𝑆𝑅𝑅
∗ = (𝑟𝑟2((𝑆𝑆𝑅𝑅 + 𝑐𝑐𝑐𝑐𝑐𝑐)𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] + (𝐹𝐹𝑅𝑅 + 𝑐𝑐𝐹𝐹𝑅𝑅)(1 − 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])) + (1 − 𝑟𝑟2)[(𝑆𝑆𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)𝑝𝑝

+ (𝐹𝐹𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)(1− 𝑝𝑝)] 
𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅

∗

𝜕𝜕𝑟𝑟2
= 𝑆𝑆𝑅𝑅𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] + 𝐹𝐹𝑅𝑅(1 − 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅]) − (𝑆𝑆𝑇𝑇𝑝𝑝 + 𝐹𝐹𝑇𝑇(1 − 𝑝𝑝)) + (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑅𝑅)(𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] − 1) =

𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
𝜕𝜕𝑟𝑟2

+ (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑅𝑅)(𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] − 1) <
𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
𝜕𝜕𝑟𝑟2

, as (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑅𝑅)(𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] − 1) < 0 

As 
𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
𝜕𝜕𝑟𝑟2

> 0, we shall additionally assume that 
𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅

∗

𝜕𝜕𝑟𝑟2
> 0 too, thus having learned that 

exploration is valuable, the firm optimally explores (𝑟𝑟2 = 1). 

With belief 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] the payoff is: 

𝜋𝜋2,𝐹𝐹𝑅𝑅
∗ = (𝑟𝑟2((𝑆𝑆𝑅𝑅 + 𝑐𝑐𝑐𝑐𝑐𝑐)𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅] + (𝐹𝐹𝑅𝑅 + 𝑐𝑐𝐹𝐹𝑅𝑅)(1− 𝐸𝐸[𝑞𝑞|𝐹𝐹𝑅𝑅])) + (1 − 𝑟𝑟2)[(𝑆𝑆𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)𝑝𝑝

+ (𝐹𝐹𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)(1− 𝑝𝑝)] 

𝜕𝜕𝜋𝜋2,𝐹𝐹𝑅𝑅
∗

𝜕𝜕𝑟𝑟2
=
𝜕𝜕𝜋𝜋2,𝐹𝐹𝑅𝑅
𝜕𝜕𝑟𝑟2

+ (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑅𝑅)(𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] − 1) < 0 

𝜕𝜕𝜋𝜋2,𝑆𝑆𝑅𝑅
∗

𝜕𝜕𝑟𝑟2
< 0, thus having learned that exploration is not valuable, the firm optimally exploits (𝑟𝑟2 =

0) 

With belief 𝐸𝐸[𝑞𝑞], the payoff is: 
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𝜋𝜋2∗ = (𝑟𝑟2((𝑆𝑆𝑅𝑅 + 𝑐𝑐𝑐𝑐𝑐𝑐)𝐸𝐸[𝑞𝑞] + (𝐹𝐹𝑅𝑅 + 𝑐𝑐𝐹𝐹𝑅𝑅)(1 − 𝐸𝐸[𝑞𝑞])) + (1 − 𝑟𝑟2)[(𝑆𝑆𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)𝑝𝑝 + (𝐹𝐹𝑇𝑇
+ 𝑐𝑐𝑐𝑐𝑐𝑐)(1 − 𝑝𝑝)] 

𝜕𝜕𝜋𝜋2∗

𝜕𝜕𝑟𝑟2
=
𝜕𝜕𝜋𝜋2
𝜕𝜕𝑟𝑟2

+ (𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐹𝐹𝑅𝑅)(𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅] − 1) < 0 

Absent learning motives, the firm optimally exploits: 𝜕𝜕𝜋𝜋2
∗

𝜕𝜕𝑟𝑟2
< 0 (𝑟𝑟2 = 0).  

The new total payoff is then the following:  

𝜋𝜋∗ = (1 − 𝑟𝑟)𝑝𝑝(𝑆𝑆𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐) + (1 − 𝑝𝑝)(1 − 𝑟𝑟)(𝐹𝐹𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐) + 𝑟𝑟𝐸𝐸[𝑞𝑞](𝑆𝑆𝑅𝑅 + 𝑐𝑐𝑐𝑐𝑐𝑐)

+ 𝑟𝑟(1 − 𝐸𝐸[𝑞𝑞])(𝐹𝐹𝑅𝑅 + 𝑐𝑐𝐹𝐹𝑅𝑅)

+ 𝛿𝛿 � �𝑝𝑝(1 − 𝑟𝑟)(𝑆𝑆𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐) + (1 − 𝑝𝑝)(1 − 𝑟𝑟)(𝐹𝐹𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)�

+ (𝑟𝑟𝑟𝑟[𝑞𝑞](𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅](𝑆𝑆𝑅𝑅 + 𝑐𝑐𝑐𝑐𝑐𝑐) + (1 − 𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])(𝐹𝐹𝑅𝑅 + 𝑐𝑐𝐹𝐹𝑅𝑅))

+ 𝑟𝑟(1 − 𝐸𝐸[𝑞𝑞])(𝑝𝑝(𝑆𝑆𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐) + (1 − 𝑝𝑝)(𝐹𝐹𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐)))�, 

where 𝜕𝜕𝜋𝜋
∗

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝜋𝜋

𝜕𝜕𝜕𝜕
−  𝑐𝑐(𝑅𝑅𝑅𝑅 − 𝐹𝐹𝑅𝑅)(1 − 𝐸𝐸[𝑞𝑞] + 𝛿𝛿𝛿𝛿[𝑞𝑞](1 −  𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])) or we could express it as: 

𝜕𝜕𝜋𝜋∗

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝜋𝜋
𝜕𝜕𝜕𝜕

= − 𝑐𝑐(𝑅𝑅𝑅𝑅 − 𝐹𝐹𝑅𝑅)�1 − 𝐸𝐸[𝑞𝑞] + 𝛿𝛿𝛿𝛿[𝑞𝑞](1 −  𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅])� < 0 

Given that 𝑐𝑐(𝑅𝑅𝑅𝑅 − 𝐹𝐹𝑅𝑅) > 0, and 1 − 𝐸𝐸[𝑞𝑞] + 𝛿𝛿𝛿𝛿[𝑞𝑞](1 −  𝐸𝐸[𝑞𝑞|𝑆𝑆𝑅𝑅]) > 0, as long as 𝐸𝐸[𝑞𝑞] ∈

(0,1), introduction of R&D tax credit will always make an option to explore look worse.  

Thus, under the introduction of an R&D tax credit, firms are more likely to pursue exploitation 

search strategies as opposed to exploration search strategies. The intuition is that R&D tax credits 

make experimenting and exploration more costly relative to exploitation, because exploration 

increases the likelihood that R&D costs can either not be expensed – or expensed only later at a 

discounted rate. That exploration may yield higher returns than exploitation does not matter since 

the size of the monetary returns from governmental tax credits are constrained by profits. 

 


